

ENGLISH // EDITION 4

RUD CONVEYOR SYSTEMS

DO YOU EXPERIENCE ANY OF THESE CONVEYOR ISSUES

Is your chain equipment wearing out too quickly? The new RUD chain grades offer optimal wear resistance. More on page 10

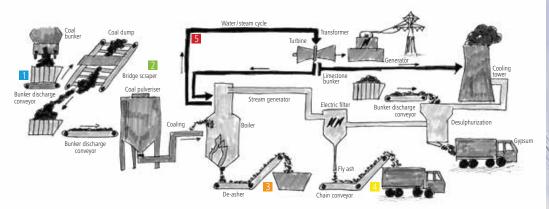
Are your chains or the teeth of the gears suddenly breaking? Is your system coming to a standstill due to this? How much is the damage if you have to shut down the system as a result of this? The new chain grades offer up to 28% improvement in breaking force. Your system will run safer and the risk of breaking will be minimised. More on page 12

Are you experiencing difficulties when installing components? Then try our installation-friendly innovations such as **Duomount** or **2win. More on page 25 und 41**

Are you missing an on-site contact person? Then contact our nearest branch. More at www.rud.com (units & locations)

Do you wish for more technical consultation and assistance? Then simply ask us. directly contact our engineers and send us your challenges related to the conveyor system. conveyor@rud.com // Technical questionnaires from page 65

Can you imagine what it would be like to work together with a company that is competent to solve all your challenges related to the conveyor system and moreover guarantees a high level of service and commercial support? Then contact us at the german headquarters: conveyor@rud.com // Tel.: 49 (0)7361 5041457 // Fax: +49 (0)7361 5041523



CRATOS conveyor system for energy extraction	
BULKOS conveyor system for bulk materials	
Our conveyor systems at a glance	
Conveyor systems for horizontal conveyance	
Conveyor systems for vertical conveyance	
RUD chain technology	10
New special products	10
Our strengths at a glance	
Round link steel chains – the new RUD specifications	
Chain connectors RSP, FL, VK	16
System sprocket wheel Sprocket wheel	
	18
single, multi-part Our tip:	10
Tooth segments with increased pitch circle diameter	20
Attachments	20
FM	21
MEZ-Z, F	22
Duomount, SSR	23
SSRF	24
Scraper	
Safer scraper operation with paired RUD chain strands	25
Scraper – individual specifications	26
Usage examples for RUD scraper	28
Reversing wheels	29
Submerged overhung idler (SOI)	30
System pocket wheel	
Pocket wheel	
multi-part, single	32
Attachments	
MEE-T	33
MEZ-T	34
Bucket attachments	
Our bucket attachment systems at a glance	36
Chain bucket elevators	37
System 2win / SWA	
Bucket attachment RUca	38
Bucket attachment 2win	39
Side wall attachment SWA	40
Chain wheels	41
System 65	
Bucket attachment system 65	42
Reversing wheel	43 44
Sprocket wheel Central chain	44
RU80, RU150, RU200	45
RU50	45 46
Drive wheel, Tension sprocket	40 47
Belt type bucket elevator	47 48
Trough chain conveyor	52
FORKY forked chain	
Single & double strand	54
Attachments, components, wheels, sprockets,	55
Trough chain conveyor with forked chain	56
Screw conveyor	58
General instructions for installation and operation	60
Maintenance and monitoring	61
SOI dimension sheet / Questionnaires	62
Conveyor and drives (sectional overview)	

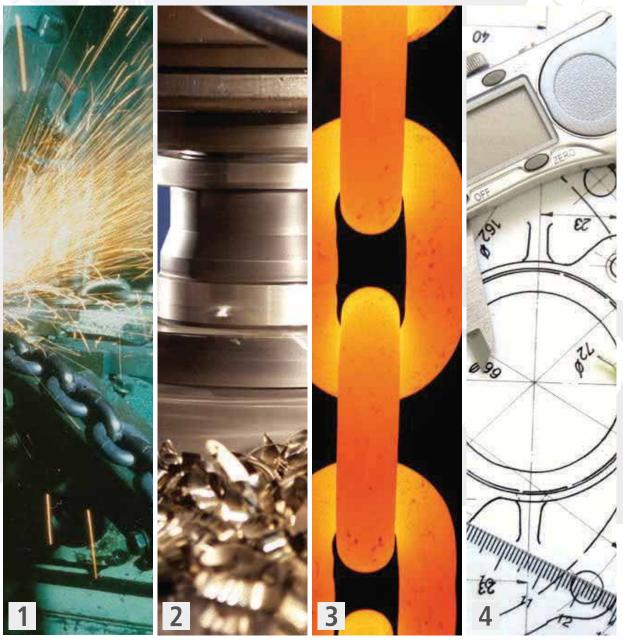
RUD SERVICE RANGE AND MILESTONES

RUD CONVEYOR TECHNOLOGY IN THE POWER STATION

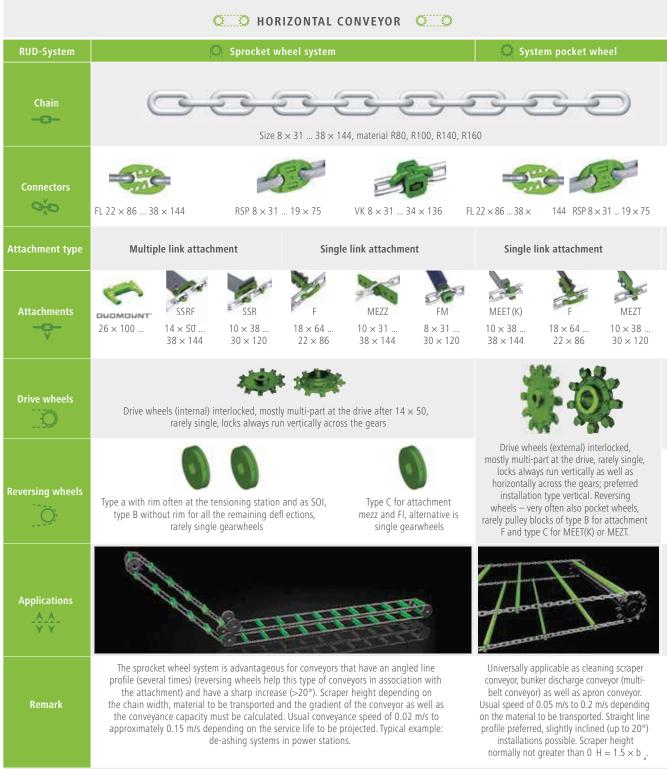
1 Bunker discharge Fossil power stations will also become an important contribution towards global supply of energy. For decades, RUD has been ensuring a high availability of coaling and ash remover plants with the help of its conveyor chains and hence ensures power generation in power stations. Thanks to our extensive experience in ash removal of large power plant boilers, biomass combustion as well as waste incineration and recycling, all our system components are always perfectly coordinated and always work reliably.

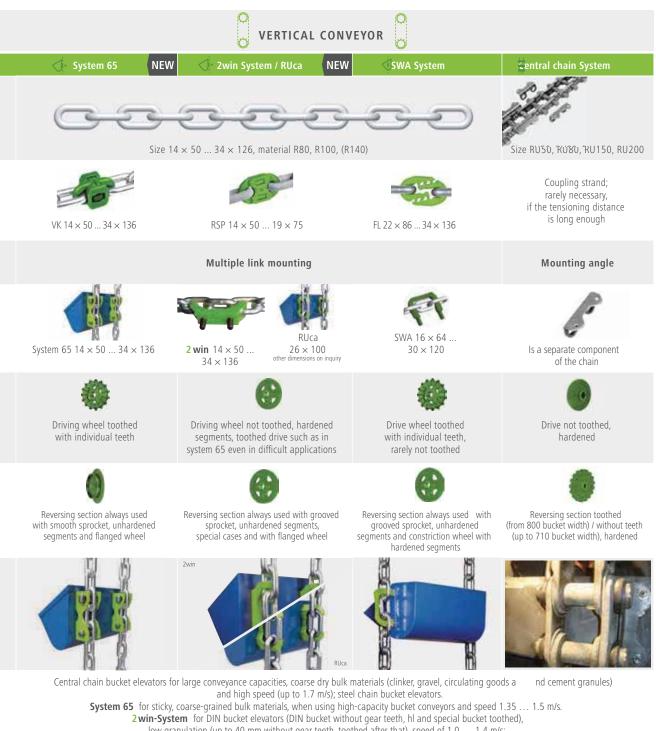
- 1875 RUD as the foundation of ERLAU AG
- 1951 First RUD global casehardened round link steel chain
- **1957** First RUD chain for de-ashing
- **1965** First round link steel chain in RUD 40 cG material
- **1985** First round link steel chain with RUD super 35 quality
- **1992** First RUD apron conveyor
- 2006 Duomount
- 2007 RUD forked link chain FORKY
- 2008 First dry ash remover with RUD chains
- 2010 RUD CRATOS
- 2012 First biogassubstrate feeder
- 2015 Conveyor chain R160

MILESTONES FOR CONVEYOR SYSTEM FOR BULK MATERIALS


TOGETHER FOR OVER 200 YEARS OF COMPETENCE

Whether it is a complete bucket conveyor, trough chain conveyor or spare parts for chain conveyors or maintenance and service, the RUD group is a reliable partner. Let it be transporting limestone from the mill to the bulk tank or conveying salts from the mine to the surface, our conveyor systems are robust and are optimally designed for these conditions. Thanks to our extensive experience in bulk conveyance of fertilisers, potassium & salt, cement and other special bulk materials, all our system compone always work reliably.


^{1.} CHAIN PRODUCTION ^{2.} MILLING ^{3.} HEAT TREATMENT ^{4.} MACHINE CONSTRUCTION


OUR RUD CONVEYOR CHAIN SYSTEMS

AT A GLANCE

low granulation (up to 40 mm without gear teeth, toothed after that), speed of 1.0 ... 1.4 m/s; **SWA System** for small conveyance capacities and low speed (...0.8 m/s), highly abrasive materials to be transported that are difficult to empty (central discharge with technical consultation).

RUD CHAIN TECHNOLOGY

NEW SPECIAL PRODUCTS - WHAT HAS IMPROVED IN OUR NEW CHAIN GRADES?

100 % FULLY AUTOMATIC WELDING CONTROLLER WITH PRECISE LINK

This results in: Accurate link geometry Highly calibrated links Better engagement

Customer benefit: Optimised running geometry with components and wheels Better interlink contact to extend chain life

OUR IMPROVEMENTS

This results in: Optimal process control

Customer benefit: Longer life Increased breaking force Safer operation

RUD is benchmark company in providing quality products with advantages in wear resistance and performance ahead of all competing companies.

100 % FULLY AUTOMATIC CONTROL AND REGULATION OF CALIBRATION

This results in: Highly calibrated chain strands More accurate chain properties for multi-strand applications

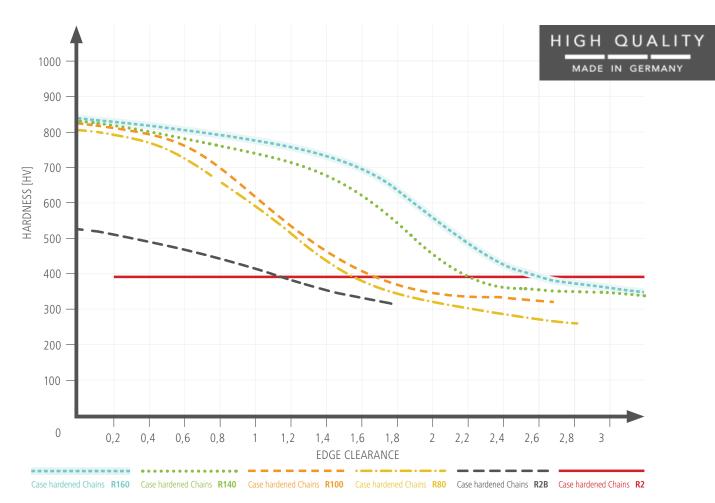
Customer benefit: Optimised run-in behaviour Lower wear Lower maintenance costs

A WORLD FIRST! RUD CONVEYOR CHAIN R160 MADE OF SPECIALLY SMELTED SPECIAL STEEL

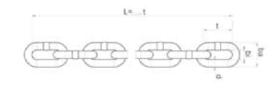
This results in: New options in heat treatment

Customer benefit: Improved wear characteristics in case of equal breaking force

RUD CHAIN TECHNOLOGY


OUR STRENGTHS AT A GLANCE

	Manufacturer		8 F	RUD°		
Argument	Founding	R80	R100	R140	R160	
Wear	Carburising depths in the link after macro etching (HTÄ) (× d)	0.10	0.10	0.14	<u>≥</u> 0.16	$\bigcirc \bigcirc$
	Surface hardness in the link (HV)	800	820	<u>≥</u> 820	<u>≥</u> 820	
	System components (compatible with each other)	+++	+++	+++	+++	
Operational safety	100 % calibrated / reproducibility	+++	+++	+++	+++	Carles and
	Special fused metal for chain steel with special alloy proportions	+	++	++	+++	
	Crack retention capacity	+	+++	+++	+++	
Simple assembly / traceability	Matching	+++	+++	+++	+++	
	Labelling on every component and chain link	+++	+++	+++	+++	
	Labelling of suitable pair using colours	+++	+++	+++	+++	
Downsizing	Tensile stress up to N / mm ²	340	450	400	400	


ROUND LINK STEEL CHAINS

THE NEW RUD SPECIFICATION

ROUND STEEL CHAIN

THE NEW RUD SPECIFICATION

ROUND STEEL LINK CHAINS IN SPECIAL GRADES -HIGHLY WEAR-RESISTANT

Chain	Chain	width			Attachment
d × t in mm	bi (min.) [mm]	ba (max.) [mm]	Weight [kg/m]	Strand length [m/Link] ^{*1)}	distance [Links]
8 × 31	10.3	28	1.3	50.0/1613 Fitting strand 24.893/803 Fitting strand	variable
10 × 38	12.5	34	2.1	50.0/1315 Fitting strand 20.026/527 Fitting strand	variable
14 × 50	16.3	47	4.0	19.95/399 Fitting strand	variable
14 × 64	16.3	47	3.7	10.176/159 Fitting strand	
16 × 64	20	55	5.1	19.9/311 Fitting strand 15.296/239	variable
18 × 64 19 × 75	21	60	6.9	Fitting strand	variable
19 × 120	23	65	6.3	Fitting strand 3.0/25 5.16/43	2
22 × 86 ^{*5)}	26	74 (73)	9.7 (9.5)	Fitting strand 10.234/119 Fitting strand	variable
25 × 95	34	90	12.5	8.265/87 Fitting strand	4
26 × 92	30	85	13.7	14.444/157 Fitting strand 7.9/79	variable 4/8/10/16
26 × 100	31	87	13.3	8.3/83 Fitting strand	4/6/12/14
30 × 108	34	97	18.0	10.692/99 Fitting strand	variable
30 × 120	36	102	17.5	5.640/47 5.88/49 Fitting strand	4/6/8/12/16
34 × 126	38	109	22.7	8.694/69 Fitting strand	variable
34 × 136	39	113	23.8	4.760/35 5.304/39	4/6/12/18 4/8/10
38 × 144	44	127	30.0	Fitting strand 3.312/23 4.176/29 Fitting strand	8/12 4/6/10

Properties

- · Highly wear-resistant for a long time
- · High-strength, as optimally heat-treated
- · Self-cleaning
- · Low-maintenance when compared to other systems
- · Simple assembly and disassembly of RUD components in the chain belt

Ordering example

Dimension

Chain for bulk material Number in strands 10 Looped chain length 20 m Type of conveyor

R100 19×75 Double strand

ROUND STEEL LINK CHAINS IN SPECIAL GRADES -HIGHLY WEAR-RESISTANT *3)

F	R2	R2	2B	R8	0	R1	00	R14	0	R16	D	Chain
Breaking Force [kN]	RUD Part number	Breaking Force [kN]	RUD Part number	Breaking Force [kN]	RUD Part number	Breaking Force [kN]	RUD Part number	Breaking Force [kN]	RUD Part number	Breaking Force [kN]	RUD Part number	d×t in mm
80	51697 7983021											
						50	7905630 7905631					8 × 31
125	7987062 7983022						100001					
	7505022					75	7905633 7905634					10 × 38
250	8504309 * ²⁾					140	7905636					14 × 50
						128*4)	7905638 7900548					14 × 64
		240	7988920			180	7982305 7905640					14 × 64
		240	7989510			225	7905641 7905643					18 × 64
		340	7904795				7905644 7905646	230	7905862			
		540	7904540			260	7905648 7905650	230	7905863			19 × 75
						260	7905651 7905652					19 × 120
610	8504310 * ²⁾	450	7101775 7101774	260	7905474 7905475	350	7905654 7905655			310	7905719 7905720	22 × 86 *5)
						400	7905657 7905658					25 × 95
850	7906999 * ²⁾			370	7905480 7905477							26 × 92
				370	7905491 7905492 7905493	430	7905660 7905661 7905662			430	7905722 7905723 7905724	26 × 100
1130	7907002 *2)			440	7905497 7905496							30 × 108
				440	7905498 7905499 7905500	640	7905664 7905666 7905667			580	7905727 7905728 7905729	30 × 120
1450	7907005 *2)			460	7905502 7905503	720	7905670 7905672					34 × 126
				460	7905521 7905522 7905506	720	7905675 7905676 7905678	630	7905865 7905866 7905868	670	7908694 7908692 7908695	34 × 136
						920	7905680 7905681 7905683			850	7908697 7908698 7908699	38 × 144

*1) Maximal variable length: no longer than the

standard belt length (in bold print)

*2) Length in compliance with ordering specifications

*3) Allowed tolerance of breaking tension +/- 10%

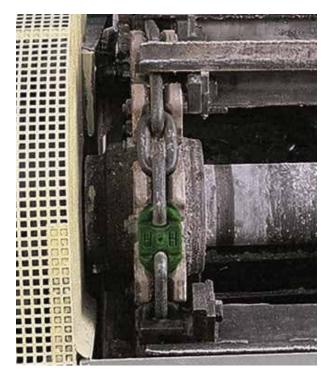
*4) RUD materials R40c-G/s3

*5) Bracketed values for chain material R2

CHAIN **CONNECTORS**

RSP

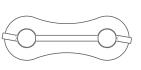
CHAIN CONNECTOR RSP (SPACE-SAVING)

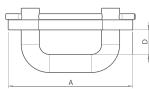

Properties

- · For using in sir conveyors
- · For medium op
- · Highly wear-re
- · Installation dir to chain link d
- · Run over sproo wheels and fla · Run over pocke
- In special case possible – see

ingle and multi-strand	RUD Part no.	Chain d × t in mm	Α	В	С	E	kg/Piece
	58571*	8 × 31	22	29	10	M 5	0.05
operating conditions resistant	54959*	10 × 38	27	35	12	M 6	0.1
imension corresponding dimension	53900	14×50	38	48	17	M 8	0.25
ocket wheels, grooved	53977	14×64	38	48	17	M 8	0.3
at wheels - vertical ket wheels vertical;	57947	16×64	43	56	18.5	M 10	0.5
ses horizontal run	52694	18 × 64	43	56	18.5	M 10	0.5
ee picture underneath	55196	19 × 75	51	66.5	23	M 12	8.0

* Zinc-coated




8 Δ

CONNECTING LINK FOR CHAIN GRADE RSP

Runs preferably vertical over pocket wheels

RUD Part no.	Breaking force [kN]	For chain d × t in mm	Α	В	c	E	kg/Piece
7986777	80	8 × 31	62	32	22	12	0.08
58594	125	10 × 38	77	36	28	13	0.14
7987640/8500097	246	14 × 50	96	46	32	17	0.8/0.9

CHAIN CONNECTORS

FL // VK

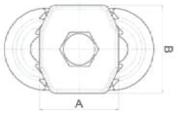
FLAT CONNECTOR FL

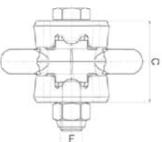
Properties

- \cdot For using in single and multi-strand conveyors
- · Simple hammer assembly
- · Highly wear-resistant
- · Installation dimension corresponding to approximate chain link dimension
- · For medium to difficult operating conditions
- · Run over sprocket wheels and pocket wheels, grooved wheels and flat wheels

Assembly of chain connector FL

A	
Ann	
	œ
Aar	


RUD Part no.	Chain $d \times t$ in mm	A	В	с	kg/ Piece
55578	22 × 86	58	77	26	1.2
62113	26 × 100	62	89	29	1.8
53280	30 × 120	70	107	36	2.9
55357	34 × 136	82	117	40	4.3
7990647	38 × 144	95	113	45	5.8


CHAIN CONNECTOR VK

Properties

- · For using in single and multi-strand conveyors, extremely robust and high wear volume
- · Run only over sprocket wheels and flat wheels
- \cdot For difficult operating conditions
- * Zinc-coated
- ** Fixing screw is overlapping on both sides

RUD Part no.	Chain d × t in mm	А	В	С	F	kg/Piece
54922*	8 × 31	27	29	31	M 8	0.1
54941*	10 × 38	32	36	36	M 10	0.3
54970	14 × 50	39	47	49	M 12	0.6
61326	16 × 64	51	57	57	M 16	1.1
55021	19 × 75	61	70	67	M 20	2
50039	19 × 120	61	70	67	M 20	2.3
55035**	22 × 86	70	79	77	M 20	2.8
51487**	26 × 100	80	90	88.5	M 24	4.6
60551**	30 × 120	100	105	105	M 30	8.1
7991616**	34 × 136	110	120	120	M 33	11.8

SPROCKET WHEEL

MULTI-PART // SINGLE-PART

SPROCKET WHEEL MULTI-PART

Properties:

 \cdot With replaceable, highly

wear-resistant tooth discs

· For difficult operating conditions

Ordering example for the complete wheel:

oracing champic	ioi une coi
Sprocket wheel	
For Chain	30×120
Number of teeth	8
Hole-Ø:	mm
Dimesion C	mm
Dimesion E	mm
Number in pieces	10

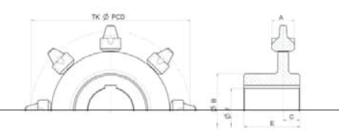
Ordering examplefor tooth discs:Tooth dicscMulti-partFor Chain19 × 75Number of teeth8Number of pieces10

For spare parts, refer to page 20.

Chain d × t in mm	No. of teeth	PCD Ø	Α	В	Standard Dimension C	E _{max.}	F _{max.} = Hole-Ø in mm	Complete wheel approximately kg/piece
10 × 38	8	194	31	95	27.0	80	60	6.3
	12	291	31	140	27.0	80	80	15.5
	16	388	31	130	30.0	85	80	25.5
14 × 50	6 8 9 10 12 13 16	193 256 288 319 383 415 510	42 42 42 42 42 42 42 42	95 120 140 160 155 155 165	9.0 25.0 45.0 50.0 50.0 60.0	70 75 90 90 100 100 120	75 85 100 100 100 100 120	7.5 11.6 13.1 20.6 33.0 38.0 66.5
14×64	7	287	42	140	45.0	90	100	16.0
	8	328	42	160	45.0	90	100	21.5
16 × 64	8	328	50	160	31.5	75	100	23.5
	9	368	50	185	30.5	125	125	41.5
	10	409	50	200	45.0	120	135	49.5
19 × 75	8	384	55	185	40.0	135	125	41.5
	10	479	55	220	45.0	120	140	71.5
22 × 86	8	440	55	185	40.0	120	120	76.5
	9	495	65	230	80.0	160	140	88.5
	10	549	65	270	80.0	160	170	95.5
26 × 100	8	512	78	270	100.0	200	180	110.0
	9	575	78	300	45.0	170	220	141.0
	10	639	78	340	80.0	160	210	155.0

* With tooth disc

Sprocket wheel multi-part*


SPROCKET WHEEL MULTI-PART **

Chain d × t in mm	No. of teeth	PCD Ø	А	В	Standard Dimension C	E _{max.}	F _{max.} = Hole-Ø in mm	Complete wheel approximately kg/piece
30 × 120 **	8	614	98	320	90.0	180	220	140.0
	9	690	98	320	90.0	180	230	170.0
	10	766	98	320	60.0	190	200	216.0
34 × 136 **	8	697	107	320	110.0	220	220	195.0
	9	783	107	380	110.0	220	240	262.0
38 × 144 **	8	738	108	365	110.0	220	220	270.0

** With replaceable, highly wear-resistant individual teeth


SPROCKET WHEEL SINGLE-PART

- Properties: Highly wear-resistant for difficult operating conditions Unhardened for easy operating conditions

Ordering example: Sprocket wheel For chain Single part/Multi-part 19 × 75 Number of teeth 8 Hole-Ø ...mm

Dimension C ...mm Dimension E ...mm Number of pieces 10 Other dimensions on request.

Chain d × t in mm	No. of teeth	PCD Ø	А	В	Standard Dimension C	E _{max.}	F _{max.} = Hole-Ø in mm	Complete wheel approximately kg/piece
8 × 31	5 7 8 10 14 16 22	100 139 159 198 277 316 434	25 25 25 25 25 25 25 25	52 92 80 95 110 120 120	25.0 27.5 30.0 17.0 27.0 27.0 45.0	60 55 60 47 80 80 90	40 65 50 65 70 80 80	1.0 2.6 3.0 3.6 7.5 9.2 16.1
10 × 38	6 7 8 10 12 16	147 170 194 243 291 388	31 31 31 31 31 31 31	89 114 95 90 140 130	30.0 25.0 25.0 20.0 27.0 30.0	60 75 75 60 80 85	60 85 60 50 80 80	4.0 3.3 6.3 6.5 15.5 28.5
14 × 50	6 8 10 16	193 256 319 510	42 42 42 42	92 120 160 160	40.0 30.0 45.0 60.0	80 90 90 120	75 100 110 120.0	7.5 13.7 20.0 31.5
16 × 64	6 8 9 10	246 327 368 409	50 50 50 50	160 145 160 175	25.0 45.0 30.0 45.0	68 90 125 120	115 100 115 125	8.5 18.0 26.5 34.5
18×64	6	247	55	150	28.0	75	100	9.5
19 × 75	8 9	384 575	55 78	180 220	40.0 45.0	135 120	110 120	40.5 85.0
22 × 86	6	331	65	190	35.0	200	140.0	64.0

OUR TIP TOOTHED SEGMENTS WITH INCREASED PITCH CIRCLE DIAMETER

Tooth discs and individual teeth, optimally adapted to the proportional chain extension given at the time of replacement. Available in dimensions 10×38 to 38×144 for all multi-part sprocket wheels. Prices on request!

Ordering example:

System	Part no. sprocket wheel
Chain	Drawing no. sprocket wheel
Teeth no.	Current chain length in %
Wheel no.	Planned installation date

CHAIN RUNS AGROUND!

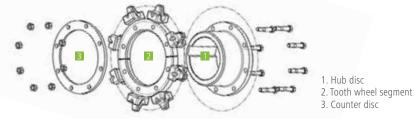
Indications of too heavily work chain: • Uneven run.

- · Hook formation at rear tooth flank,
- · Flank clearance used up
- · Strong vibration at the drive.
- Chain falls only after several teeth on chain link support of the teeth

P.C.D. of standard sprocket wheel

The chain suited enlarged p.c.d. of the teeth

totteretrageraveling


LATER – THE CHAIN WEAR IS COMPENSATED FOR BY USING A NEW TOOTH SEGMENT WITH LARGER TOOTH FLANK.

- The solution: sprocket wheels with increased pitch circle diameter.
- Replaceable tooth segments / individual teeth

Run-in behaviour of worn chain at the driving gear

- Distance of horizontal chain link horizontal link support at the tooth (approx. 30 – 35 mm)
- B. Synchronisation of vertical link at the outermost tip of the tooth

STRUCTURE OF SPROCKET WHEEL - MULTI-PART

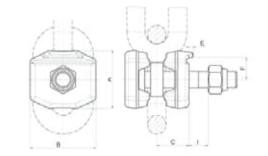
IN CASE OF NEW CHAINS, NEW TOOTH DISCS / INDIVIDUAL CHAINS SHOULD ALWAYS BE USED.

In case of new chain components, the horizontal link is on the horizontal link support of the tooth when running-in on the first tooth of the sprocket wheel. Chain elongation due to wear results in the chain mounting in the direction of the tooth tip. In t his case, the vertical link is only taken from the tooth tip and there exists the danger of skipping the chain.

ATTACHMENTS SYSTEM SPROCKET WHEEL

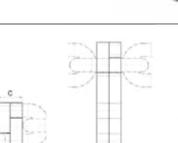
ATTACHMENT FM

Properties:


- · Screwed and can be clamped / screwed in the tensioned chain strand
- For scraper height up to 1.8 times the outer chain link width
- · Variable scraper distance possible
- · For rough operating conditions
- Run over sprocket wheels and plain wheels

RUD Part no.	Chain d × t in mm	Α	В	C	E	F	G	H		kg/Piece
52738 52740 52742	8×31*	27	29	15.5	2.5	10.5	M 8	40 45 50	5 10 15	0.1 0.1 0.1
52743	10 × 38*	32	36	18	3	12.5	M 10	50	8	0.15
52744 52745 52746	14 × 50	39	47	24.5	3	15.5	M 12	65 70 75	10 15 20	0.4 0.4 0.4
52747 52748 52749	16 × 64	51	57	28.5	4	20	M 16	80 90 110	15 25 45	0.8 0.8 0.8
52751 52752 52755	19 × 75	61	70	33.5	5	22.5	M 20	110 120 130	30 40 50	1.4 1.4 1.4
52756 52757 52758	22 × 86	70	79	38.5	5	26	M 20	110 120 130	20 30 40	1.9 1.9 1.9
52759 7989190	26 × 100	80	93	43	6	30	M 24	130 160	30 60	3.0
52760	30 × 120	100	105	52.5	7	37	M 30	160	40	5.2
	Part no. 52738 52740 52742 52743 52744 52745 52746 52747 52748 52749 52749 52749 52749 52749 52749 52749 52751 52755 52756 52758 52759 7989190	Part no. d × t in mm 52738 $8 \times 31^*$ 52742 $8 \times 31^*$ 52743 $10 \times 38^*$ 52743 $10 \times 38^*$ 52743 14×50 52746 14×50 52746 16×64 52745 19×75 52755 22×86 52759 26×100	Part no. d × tin mm A 52738 $8 \times 31^*$ 27 52740 $10 \times 38^*$ 32 52742 $10 \times 38^*$ 32 52743 14×50 39 52746 16×64 51 52745 19×75 61 52755 22×86 70 52758 26×100 80	Part no. d × t in mm A B 52738 $8 \times 31^*$ 27 29 52740 $10 \times 38^*$ 32 36 52743 $10 \times 38^*$ 32 36 52743 14×50 39 47 52745 16×64 51 57 52746 19×75 61 70 52755 22×86 70 79 52758 26×100 80 93	Part no. d × t in mm A B C 52738 $8 \times 31^*$ 27 29 15.5 52740 $10 \times 38^*$ 32 36 18 52742 $10 \times 38^*$ 32 36 18 52743 $10 \times 38^*$ 39 47 24.5 52745 14×50 39 47 24.5 52746 16×64 51 57 28.5 52747 19×75 61 70 3.55 52755 22×86 70 79 38.5 52758 26×100 80 93 43	Part no. d × tin mm A B C E 52738 $8 \times 31^*$ 27 29 15.5 2.5 52740 $10 \times 38^*$ 32 36 18 3 52743 $10 \times 38^*$ 32 36 18 3 52744 14×50 39 47 24.5 3 52745 14×50 39 47 24.5 3 52746 14×50 39 47 24.5 3 52747 16×64 51 57 28.5 4 52755 19×75 61 70 33.5 5 52755 22×86 70 79 38.5 5 52759 26×100 80 93 43 6	Part no. d × tin mm A B C E F 52738 $8 \times 31^*$ 27 29 15.5 2.5 10.5 52740 $10 \times 38^*$ 32 36 18 3 2.5 52743 $10 \times 38^*$ 32 36 18 3 2.5 52744 14×50 39 47 24.5 3 15.5 52746 14×50 39 47 24.5 3 15.5 52746 16×64 51 57 28.5 4 20 527575 19×75 61 70 33.5 5 22.5 527575 22×86 70 79 88.5 5 26 52759 26×100 80 93 43 6 30	Part no. d × tin mm A B C E F G 52738 $8 \times 31^*$ 27 29 15.5 2.5 10.5 M8 52740 $10 \times 38^*$ 32 36 18 3 2.5 M10 52743 $10 \times 38^*$ 32 36 18 3 2.5 M10 52744 14×50 39 47 24.5 3 15.5 M12 52745 14×50 39 47 24.5 3 15.5 M12 52746 14×50 39 47 28.5 4 20 M16 52745 16×64 51 57 28.5 4 20 M16 52755 19×75 61 70 33.5 5 22.5 M20 527575 22×86 70 79 88.5 5 30.6 $M24$ 52759 26×100 <td>Part no. d × tin mm A B C E F G H 52738 $8 \times 31^*$ 27 29 15.5 2.5 10.5 M8 40 52740 $8 \times 31^*$ 27 29 15.5 2.5 10.5 M8 40 52742 $10 \times 38^*$ 32 36 18 3 12.5 M10 50 52743 $10 \times 38^*$ 32 36 18 3 12.5 M10 50 52744 14×50 39 47 24.5 3 15.5 M12 75 52745 16×64 51 57 28.5 4 20 M16 90 52755 19×75 61 70 33.5 5 22.5 M20 120 52755 22×86 70 79 38.5 5 26 M20 120 52759 26×100 80 93 43</td> <td>Part no. d × tin mm A B C E F G H I 52738 $8 \times 31^*$ 27 29 15.5 2.5 10.5 $M8$ $\frac{40}{50}$ $\frac{5}{10}$ 52742 $10 \times 38^*$ 32 36 18 3 12.5 $M10$ 50 8 52743 $10 \times 38^*$ 32 36 18 3 12.5 $M10$ 50 8 52744 14×50 39 47 24.5 3 15.5 $M12$ $\frac{65}{75}$ $\frac{10}{15}$ 52747 14×50 39 47 24.5 3 15.5 $M12$ $\frac{65}{75}$ $\frac{10}{75}$ 52747 16×64 51 57 28.5 4 20 $M16$ $\frac{90}{10}$ $\frac{25}{255}$ 52755 19×75 61 70 33.5 5 26.5 $M20$ $\frac{100}{120}$ $\frac{30}{30}$</td>	Part no. d × tin mm A B C E F G H 52738 $8 \times 31^*$ 27 29 15.5 2.5 10.5 M8 40 52740 $8 \times 31^*$ 27 29 15.5 2.5 10.5 M8 40 52742 $10 \times 38^*$ 32 36 18 3 12.5 M10 50 52743 $10 \times 38^*$ 32 36 18 3 12.5 M10 50 52744 14×50 39 47 24.5 3 15.5 M12 75 52745 16×64 51 57 28.5 4 20 M16 90 52755 19×75 61 70 33.5 5 22.5 M20 120 52755 22×86 70 79 38.5 5 26 M20 120 52759 26×100 80 93 43	Part no. d × tin mm A B C E F G H I 52738 $8 \times 31^*$ 27 29 15.5 2.5 10.5 $M8$ $\frac{40}{50}$ $\frac{5}{10}$ 52742 $10 \times 38^*$ 32 36 18 3 12.5 $M10$ 50 8 52743 $10 \times 38^*$ 32 36 18 3 12.5 $M10$ 50 8 52744 14×50 39 47 24.5 3 15.5 $M12$ $\frac{65}{75}$ $\frac{10}{15}$ 52747 14×50 39 47 24.5 3 15.5 $M12$ $\frac{65}{75}$ $\frac{10}{75}$ 52747 16×64 51 57 28.5 4 20 $M16$ $\frac{90}{10}$ $\frac{25}{255}$ 52755 19×75 61 70 33.5 5 26.5 $M20$ $\frac{100}{120}$ $\frac{30}{30}$

H = screw lengthI = clamp length


ATTACHMENTS SYSTEM SPROCKET WHEEL

MEZ-Z // F

ATTACHMENT MEZ-Z

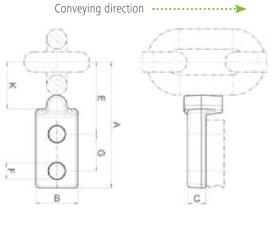
Properties:

- \cdot For medium to difficult operating conditions
- \cdot For scraper height up to 1.5 times the outer chain link width
- · Assembly and disassembly in case of tensioned chain possible
- · Run across sprocket wheels and flat wheels

S	56]
-	0	m 0
	\odot	

RUD Part no.	Chain d × t in mm	А	В	с	E	F	G	kg/Pair
61629	10 × 38	35	100	12	37	11	30	0.3
61630	14 × 50	50	130	30	52	13.5	36	1.25
61635	22 × 86	75	190	36	75	22	50	3.2

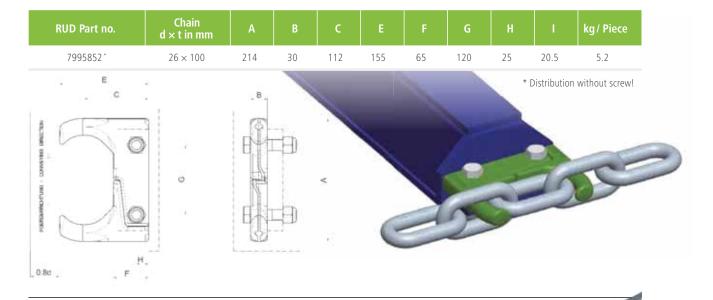
ATTACHMENT F


Properties:

- · For medium and difficult operating conditions
- · Directly welded
- For scraper height up to 1.5 times the outer chain link width
- · Assembly and disassembly of scraper bars in case of tensioned chain loops
- · Replacement for chain ends and chain brackets
- · Run across sprocket wheels, pocket wheels and grooved wheels

RUD Part no.	Chain d × t in mm	Α	В	с	E	F	G	K _{max}	kg/Pair
53215	18 × 64	126	35	30	65	17	40	45	0.64
55039	19 × 75	134	46	20	75	18	40	37	0.71
53065	22 × 86	139	46	20	80	18	40	51	0.71

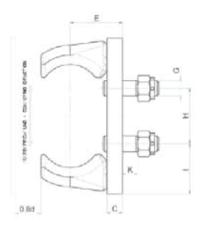
Attachment F can also be used in pocket wheel system.

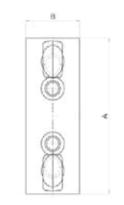

DUOMOUNT'

ATTACHMENT DUOMOUNT ®

Properties:

- · For very high conveyance capacities up to 50 t/h
- · Multiple link attachment
- For scraper height up to 2.5 times the outer chain link width
- \cdot Can be tensioned in the tensioned chain belt
- · Scraper profiles of any shapes possible
- · Variable scraper distance possible
- · Highly wear-resistant
- · Runs over sprocket wheels and grooved d wheels



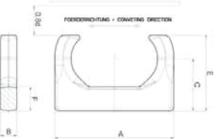

ATTACHMENT SELF-LOCKING - REVERSIBLE SSR

Properties:

- · For difficult operating conditions
- · For double-strand conveyors
- · Reverse operation possible
- · Robust and easy
- \cdot Run across sprocket wheels and grooved wheels

RUD Part no.	Chain d × t in mm	A	В	с	E	н	G	I	к	kg/Piece
55333	10 × 38	82	24	10	30	58	M 10	12	10	0.3
60812	19 × 75	175	60	20	58	65	M 20	62.5	20	2.5
60343	22 × 86	200	70	20	68	71	M 20	72.5	20	3.4
59991	26 × 100	235	80	20	72	85	M 20	85	20	4.8
62331	30 × 120	280	90	25	85	98	M 24	100	24	7.5

ATTACHMENT SYSTEM SPROCKET WHEEL



SSRF

ATTACHMENT SELF-LOCKING - REVERSIBLE F. ATASS51

Properties:

- \cdot For very high conveyance capacities
- · Multiple link attachment
- \cdot For scraper height up to 2.5 times the outer chain link width
- \cdot Weldable at scraper profiles of any shapes
- · Variable scraper distance possible
- · Highly wear-resistant
- \cdot Run over sprocket wheels and grooved wheels

RUD Part no.	Chain d × t in mm	А	В	с	E	F	kg/Piece
7102723	14 × 50	110	16	50	73	25	0.5
7102724	16 × 64	135	19	59	83	30	0.8
63734	19 × 75	156	21	69	100	36	1.2
51297	22 × 86	182	25	80	116	37	2.0
63735	26 × 100	214	30	92	135	45	3.3
7102491	30 × 120	252	35	110	160	56	5.3
7102490	34 × 136	282	38	122	177	60	7.2
7989371	38 × 144	309	43	137	199	68	10.0

SCRAPER BARS

SAFER SCRAPER OPERATION WITH MATCHED RUD STRANDS

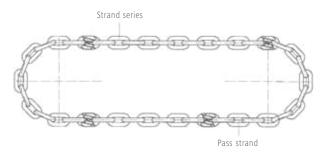
RUD PRODUCT ADVANTAGE: LABELLING OF SUITABLE PAIR USING COLOURS!

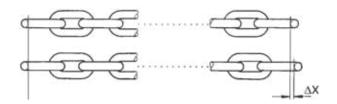
OUR SCRAPER BARS AND ATTACHMENTS FORM THE PERFECT SYSTEM IN ASSOCIATION WITH OUR PAIRED CHAIN STRANDS:

- · Optimal run across the pocket and sprocket wheels
- The suitable scraper design for every material to

be transported

\cdot Lower wear

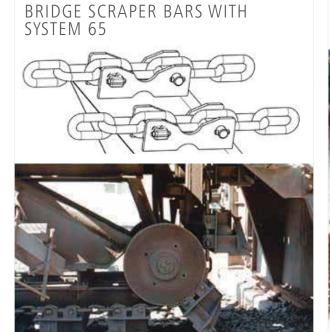

- · No scraper tilting
- Everything from a single source Chains, connectors, scraper bars and wheels



Strand lengths, production tolerance:

+ 0.4 % = 0.55 % max. - 0.15 % i.e. for 10 m length, max. difference 55 mm

length tolerance ΔX of matched chain left (Multiple-belt-conveyor) $\Delta X = 0.05 \%$ max., i.e. for e.g. 10 m long belts the max. difference is. 5.0 mm. if the length of the belt is <8 m, the largest pair tolerance = 4 mm.

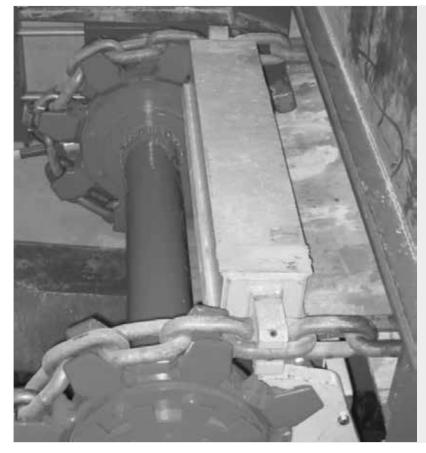


When ordering looped chain in millimetres, we require the precise scraper distance for distributing into individual belt lengths.

SCRAPER BARS

USE AREAS






LANDFILL WASTE – BUNKER DISCHARGE WITH MEE-T ATTACHMENT

SCRAPER BARS

THE CORRECT SCRAPER BAR FOR YOUR REQUIREMENTS

RUD scraper bars are always optimally adapted to the requirements and operating conditions specified to us by the customer. We produce scraper bars as per the specifications of the customers, provided that no consultation or support is necessary. Alternatively, we suggest an optimal scraper version based on an intensive consultation, which is developed in the dialogue.

The following information is hence necessary and evaluated by us:

- · Clear trough width of the conveyor as well as its exact line profile
- · Trough bottom material and design
- · Chain centre distance

- Maximum occurring / requested conveyance capacity
- · Conveyance speed
- Properties of the material to be conveyed such as dampness, bulk density, angle of friction, particle size

USAGE EXAMPLES * – SCRAPER BARS AND ATTACHMENTS

Standard U profile with MEE-T attachment	Standard scraper bar design for difficult conditions with SSRF or Duomount	Standard angle profile with MEE-T attachment
Typical usage options: Cleaning scraper conveyor	Typical usage options: Wet de-ashing systems	Typical usage options: Coaling systems / coal feeders Bunker discharge conveyor

* Other scraper bar designs on request

REVERSI NG WHEELS

TYPE A // TYPE B // TYPE C



TYPE A

Properties:

- · Grooved wheels with rim
- · For using at tensioning stations

TYPE B

Properties:

- · Grooved wheels without rim
- · For using in loose side of the belt under the trough

TYPE C

Properties:

Chain

d × t

 10×38

 14×50

- · Plain wheels with rim
- · For both the use cases, however only possible when using flange attachments and very short scraper distances

teeth number

8

10

12

8

10

12

PCD

194

243

291

256

319

15.5

15.5

15.5

21

21

45

45

45

60

60

Chain d×t in mm	Corr. teeth number	PCD Ø	C*	E* (Type A or C)	Chain d×t in mm	Corr. teeth number	PCD Ø	C*	E=2C* (only Type B)	
10 × 38	8 10 12	194 243 291	15.5 15.5 15.5	45 45 45	10 × 38	8 10	194 243	15.5 15.5	31 31	
14 × 50	8 10 12	256 319 383	21 21 21	60 60 60	14 × 50	8 10	256 319	21 21	42 42	
16 × 64	8 10 12	327 409 490	25 25 25	70 70 70	16 × 64	8 10	327 409	25 25	50 50	
18 × 64	8 10	323 402	27.5 27.5	80 80	18 × 64	8	323	27.5	55	
19 × 75	8 10 12	384 479 574	27.5 27.5 27.5	80 80 80	19 × 75	8 10	384 479	27.5 27.5	55 55	
22 × 86	8 10 12	440 549 658	32.5 32.5 32.5	90 90 90	22 × 86	8 10 12	440 549 658	32.5 32.5 32.5	65 65 65	
Ot	her sizes o	n reque	est.		Ot	her sizes c:	n requ	est.		

Other sizes on request.

* For dimension C and E, refer to page 64. For ordering, please use the questionnaire on page 64.

SUBMERGED OVERHUNG IDLER

(SOI)

Grooved wheels with rim for us e in the submerged system.
Underwater sprockets vary from the

0:0

normal reversion wheel only in the design of the "flying" shaft bearing, which are optimally designed by RUD for even these use cases. numerous use cases all over the world prove their high availability.

UNDERWATER SOI

- · Ideal for wet de-ashing systems
- · Electronic circulation control optionally possible
- Assembly of outer wall at the trough
- Suitable for modifying old systems
- · High-quality, robust and easy-running bearing technology

2

5

- · Optimised bearing seal
- · Easily accessible for maintenance works
- \cdot Deliverable in all reversing wheel dimensions
- Two design versions: with or without bearing shield in fixed casing hub

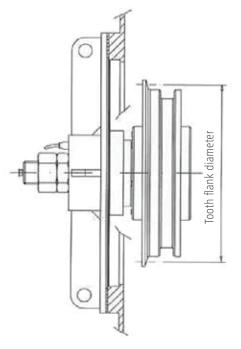
. SOI REVERSION WHEEL

2. TROUGH WALL

3. CHAIN

4. BEARING SIGN

5. TROUGH BOTTOM

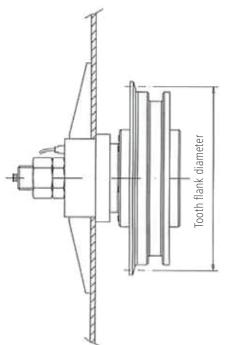

6. SCRAPER

SUBMERGED OVERHUNG IDLER

(SOI)

DESIGN SOI 1

Chain d × t in mm	PCD Ø	Corresponding to the number of teeth
19 × 75	290 384	6 8
22 × 86	331 440 549	6 8 10
26 × 100	386 512 639	6 8 10
30 × 120	426 614 766	6 8 10


Ordering example:

SOI 1 22 × 86-400/790-10

Reversion wheel with bearing shield for chain 22 × 86-R100 with 400 mm sprocket Ø and 790 mm Bearing shield Ø with electric circulation control (1), without automatic lubricator (0). Surface condition: Primed

For connecting dimensions refer to dimension sheet on page 62.

DESIGN SOI 2

Chain d × t in mm	PCD Ø	Corresponding to the number of teeth
19 × 75	290 384 479	6 8 10
22 × 86	331 440 549	6 8 10

Ordering example:

SOI 2 22 × 86-400/790-10

Reversion wheel without bearing shield for chain 22 \times 86-R100 with 400 mm sprocket Ø and 790 mm Bearing shield Ø with electric circulation control (1), without automatic lubricator (0). Surface condition: Primed

For connecting dimensions refer to dimension sheet on page 63.

POCKET WHEELS

SINGLE, MULTI-PART POCKET WHEEL SYSTEM

MULTI-PART POCKET WHEEL

Chain d × t in mm	z	PCD Ø	A	В	с	E _{max.}	F _{max.} = Hole-Ø in mm	Complete sprocket wheel approx. kg/piece
10 × 38	8	195	35.0	80	30	80	45.0	6.5
14 × 50	8	256	49	120	35	100	80.0	13.1
	9	288	49	140	45	90	100.0	15.2
	10	320	49	155	40	105	100.0	23.8
	12	384	49	155	40	105	100.0	37.4
16 × 64	8	327	56	160	45	125	110	27.2
	10	409	56	195	45	125	140	45.4
18×64	8	328	64	150	45	125	90	30.5
19 × 75	8	384	66	185	45	145	130	40.5
	10	479	66	225	45	145	150	68.0
22 × 86	7	387	77	155	65	165	90	45.0
	8	440	77	200	65	165	120	59.5
	10	549	77	225	65	165	140	106.0
26 × 100	8	512	91	235	75	175	150	89.0
	10	639	91	335	75	175	230	215.0
30 × 120	9	690	108	320	80	170	180	189.0
	10	766	108	360	90	180	240	243.0
34 × 136	9	783.0	122.0	380	90.0	240	260.0	335.0
38 × 144	8	738.0	130.0	355	125.0	250	240.0	316.0

SINGLE-PART POCKET WHEEL

	Chain d × t in mm	Z	PCD Ø	А	В	с	E _{max.}	Chain wheel compl. ca. kg / Pcs.	F _{max.} = Hole-Ø in mm
_	8 × 31	5* 6 7 10*	100.3 119.7 139.3 198.1	40 45 40 43	62 - 70 80	25.0 22.5 27.5 25.0	68 45 55 50	4.5 2.9 4.5 6.5	45.0 40.0 40.0 48.0
	10 × 38	5* 6 8 10* 12	123.0 147.0 194.7 243.0 291.0	55.0 35.0 35.0 35.0 35.0	75 85 100 100 100	32.0 30.0 25.0 30.0 30.0	80 80 80 80 80	3.5 3.5 11.5 21.0 22.0	45.0 55.0 65.0 65.0 65.0
	14 × 50	6 7 8 10 12	193.0 225.0 256.0 319.0 383.0	49 49 49 49 49	105 135 120 - 160	30 30 30 30 30	75 65 100 70 100	7.5 12.0 13.5 29.0 23.5	70.0 85.0 80.0 120.0 120.0
	16 × 64	6 8 10	247.0 328.0 409.0	56 56 56	140 160 195	45 45 45	120 125 125	15.1 21.5 35.4	85.0 120.0 140.0
	18×64	6 8	247 328	63.5 63.5	140 150	45 45	120 125	20.1 25.5	95.0 110.0
	19 × 75	8 10	385 479	66.0 66.0	185 225	45 45	130 145	40.0 50.0	125.0 150.0
	22 × 86	6 7 8 10	332.0 386.0 440.0 549.0	77.0 77.0 77.0 77.0	 265 185 300	50.0 65.0 65.0 65.0	100 165 165 165	27.0 50.0 50.5 100.0	140.0 150.0 135.0 180.0
	26 × 100	8 10	512.0 639.0	91.0 91.0	235 335	75.0 75.0	175 175	90.0 110.0	150.0 250.0
	30 × 120	8	614.0	108.0	320	55.0	210	180.0	220.0

Properties:

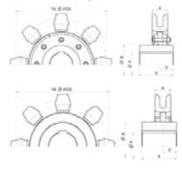
- · With replaceable, highly wear-resistant pocket wheel discs
- · For difficult operating conditions
- · Preferably used as driving gear

Ordering example

for the complete	wheel:
Multi-part pocket	wheel
For chain	19×75
Pocket number	8
Hole-Ø	mm
Dimension C	mm
Dimension E	mm
Number in piece	10

Ordering example for pocket wheel disc:

Multi-part pocket wheelFor chain19 × 75Pocket number8Number in piece10


Properties:

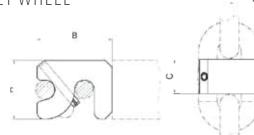
- · Highly wear-resistant
- · For medium and difficult
- operating conditions
- · Especially suitable as guide wheel

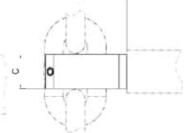
Ordering example:

5 1	
Single-part pocke	t wheel
For Chain	19×75
Pocket Number	8
Hole-Ø	mm
Dimension C	mm
Dimension E	mm
Number in piece	10

Other sizes on request.

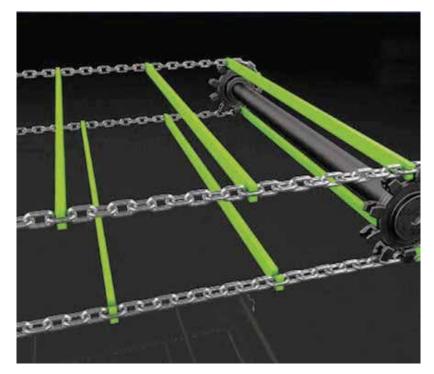
without heat treatment


ATTACHMENT MEE-T


SYSTEM POCKET WHEEL

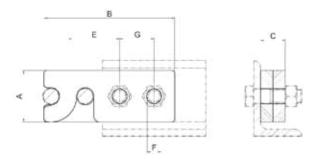
MEE-T IN ONE PART FOR SYSTEM POCKET WHEEL

Properties:


- · For difficult operating conditions
- · Scraper height up to 1.5 times the chain link width
- · Double-strand conveyor and multiple- strand conveyor systems
- · Can be welded to anything
- Securing with locking pin if necessary
 Run across pocket wheels and plain wheels
- · Deliverable with and without pin locking

F

RUD Part no. with pin locking	RUD Part no. without pin locking	Chain d × t in mm	А	В	с	E	kg/Piece
62930	62929	10 × 38	35	43	16	27	0.2
55158	50380	14×50	50	60	20	38	0.4
62676	50383	16×64	56	70	28	44	0.6
62677	50417	18×64	62	78	25	49	0.6
62678	50418	19 × 75	65	80	35	50	1.0
62680	50419	22 × 86	75	95	40	60	1.6
62681	50423	26 × 100	90	111	45	70	2.5
62683	50424	30 × 120	105	128	55	81	4.6
62685	50425	34 × 136	115	144	65	91	6.0
7992593	-	38×144	128	160	65	101	7.3


ATTACHMENT MEZ-T

SYSTEM POCKET WHEEL

MEZ-T ATTACHMENT

Properties:

- For medium to difficult operating conditions
 For scraper height up to 1.5 times the outer chain link width
 Assembly and disassembly in case of tensioned chain possible
 Double-strand conveyor and multiple-strand conveyor systems
 Run over pocket wheels and plain wheels

RUD Part no.	Chain d × t in mm	А	В	с	E	F	G	kg/Pair
7102680	10 × 38	35	100	12	37	11.0	30	0.3
62686	14×50	50	130	16	52	13.5	36	0.7
62687	16×64	56	150	24	58	17.5	40	1.3
63039	18 × 64	62	155	24	63	17.5	40	1.5
63040	19 × 75	65	165	30	65	17.5	46	2.0
62688	22 × 86	75	190	36	75	22.0	50	3.2
62689	26 × 100	90	220	44	86	22	60	5.5
62690	30 × 120	105	250	56	96	26	70	9.3

BUCKET ATTACHMENT SYSTEMS

AT A GLANCE

BUCKET ATTACHMENT SYSTEMS

	Bucket width [mm]	Max. conveyance capacity [m³/h]	Max. dimension between axes [m]	Max. conveyance speed [m/s]	Max. recommended granulation [mm]	Max. temperature of material to be con- veyed [°C]	Recommended material to be conveyed	
RUD Central chain	F			traction mech Breaking For	ianism ce 570–2000 kl	N	Cement,	
	250 - 1100 simple $2 \times 250 - 2 \times 1000$ tandem	600 1200	70	1.7	120	250	limestone, gravel, coke, slag, clinker	
RUD System 65 *	Round			traction mech I × 136; Break	ianism king Force 140–	720 kN	Cement, limestone,	
	250-1600	1100	65	1.5	120	200	gravel, coal, sugar beets, clinker, potassium, rock, salt, fertili- ser, soda	
RUD 2win [*]	Round			traction mech I × 136; Break	ianism king Force 140–	720 kN	Cement, limestone,	
	250-1250	700	60	1.5	100	200	lump lime, soda, gypsum, fertiliser, filter dust	
RUD fabric belt	Fa			traction mech th 4–6 EP 630	anism:)—EP 1600 inser	rts	Cement, limestone,	
	160-1250	700	45	1.7	40	120	gypsum, sugar, coal, aluminium oxide, sand, potassium, rock salt, slag, filter dust	
RUD steel cord belt	Reco				d belts are avai mm belt width	lable	Cement,	
	315-1600	1200	120	1.7	80	120	limestone, coal, potassium, rock salt, slag	
5	· Cl · · · W · Ad	eak point doubl dditional consec	a double func- tension of the et to the chain e-function may quences may be	chain loop loop and absorved lead to fatigue loose screw fit			ms	
		ution RUD mu sembly over sev			and System 65	(see page 39 –	45)	

- No transmission of tension from the chain to the attachment
- · Gentle introduction of the scooping force into the chain strand
- · Minimizing wear in the chain joints

35

BUCKET ELEVATORS

AT A GLANCE

These are specially designed for the dust-free, vertical conveyance of powdery, granular, lumpy and high temperature bulk materials.

Highly wear-resistant chains, traction wheels or sprockets ensure that even abrasive materials are transported reliably. Specially designed chaintype bucket elevators are available in either centrifugal/gravity, positive or central discharge designs dependent on the application.

CONVEYING CAPACITIES, REFERENCE VALUES FOR APPROX. 75 % FILLING

				Bucke	t DIN 15	233								
	Width [mm]	160	200	250	315	400	500	630	800	1000	1250	1600		
	Conveyance speed [m/s]	1.05	1.05	1.15	1.15	1.20	1.20	1.34	1.34	1.48	1.48	1.48		
\smile	Conveyance capacity [m ³ /h]	9	11	20	25	44	61	94	129	196	305	391		
	Bucket DIN 15234													
	Width [mm]	160	200	250	315	400	500	630	800	1000	1250	1600		
>	Conveyance speed [m/s]	1.05	1.05	1.15	1.15	1.20	1.20	1.34	1.34	1.48	1.48	1.48		
\bigcirc	Conveyance capacity [m ³ /h]	14	17	31	39	70	98	151	207	304	473	605		
				Spec	ial buck	et								
\bigwedge	Width [mm]	160	200	250	315	400	500	630	800	1000	1250	1600		
	Conveyance speed [m/s]	1.15	1.15	1.25	1.25	1.28	1.33	1.49	1.49	1.48	1.48	1.48		
	Conveyance capacity [m ³ /h]	18	23	41	52	91	133	209	287	353	558	715		
			High	-capacit	y bucket	: conveyo	or							
	Width [mm]	160	200	250	315	400	500	630	800	1000	1250	1600		
7	Conveyance speed [m/s]	1.15	1.15	1.25	1.25	1.28	1.33	1.49	1.49	1.48	1.48	1.48		
\bigcirc	Conveyance capacity [m ³ /h]	27	34	59	75	129	185	288	397	499	789	1010		

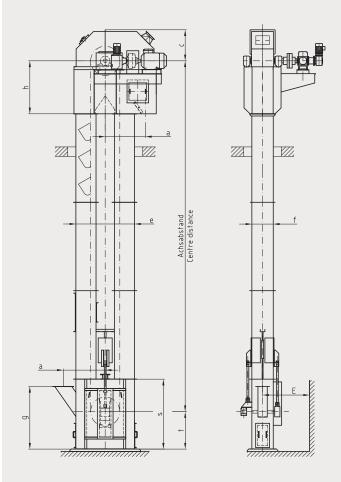
DIMENSIONS *

Bucket width	b	160	200	250	315	400	500	630	800	1000	1250	1600
	а	724	724	904	904	1004	1160	1264	1460	1673	1747	1747
Head	с	560	560	695	695	785	885	955	1160	1320	1340	1340
	h	850	850	1050	1050	1250	1450	1600	1800	2100	2300	2300
Funnel	e	1000	1000	1250	1250	1400	1650	1800	2100	2450	2550	2550
runnei	f	280	355	450	545	660		1600	2000			
	а	724	724	904	904	1004	1160	1264	1460	1673	1747	1747
Foot	g	1220	1220	1350	1350	1500	1700	1900	2100	2450	2500	2500
FOOL	t	670	670	800	800	880	970	1080	1300	1550	1550	1550
	s	1320	1320	1450	1450	1600	1800	2000	2200	2750	2750	2750
Expansion Distance	E	900	1000	1200	1300	1500	1600	1800	2100	2500	2900	3500

Not permitted for snub roller & mid-discharge bucket elevators.

CHAIN ELEVATORS DESCRIPTION

The bucket elevator casings are selfsupporting, but they require horizontal guides at least every 15 meters and below the elevator head. The bucket elevator head comprises a lower section with doors to access the adjustable discharge plate, and braced bearing mountings, for the pedestal bearings which support the drive shaft, the shaft exit points use grease filled radial shaft seals. The upper sections comprise a multipart removable hood with an inspection door. A drive platform is mounted on the side of the lower part of the head for supporting a wide variety of commercially available drives. If required a maintenance platform and or an overhead support/ service beam can be fitted if required. An elevator drive normally consists of a geared motor unit, which is normally connected to a frequency controller for maintenance purposes. For higher power requirements, we recommend a drive unit with a bevel spur gearbox, and standard motor optionally with ancillary drive. Starting characteristics can be optimized by a hydraulic clutch or an electric soft start.


The double or single leg casing is torsionally rigid sheet metal housing, constructed of standard section lengths with flange connectors. The maintenance and assembly door position should preferably be located in the elevators raising casing leg, approximately 0.8 m above a platform.

The elevator boot is optionally designed with either internal, oil-filled bearings or external pedestal bearings. With external bearings, the shaft exit points are sealed by gray cast-iron stuffing boxes. There are large assembly doors and cleaning doors on both sides. The chain takeup tension is generated by a weight or spring-loaded spindle take-up device.

Depending on the type of chain used, RUD driving wheels are either non-toothed chain pulleys with replaceable, highly wear-resistant segments, or toothed sprocket wheels with replaceable, highly wear-resistant teeth. The RUD return wheels have replaceable, highly wear-resistant segments which in certain designs incorporate guide discs.

Buckets are manufactured according to DIN or our works standard. The materials used are steel, stainless steel, or rubber.

Buckets are attached by chain shakkles, bolted clamping clips, plug-in attachments or angle brackets.

The chains are either hardened, round link chains to DIN Standard or works standard chain designs made of special, highly wear-resistant alloy steel. Engineering style chains are also used, as either double or single central chains.

Standard safety devices such as speed governors and level indicators, to monitor the operating status of the bucket elevator are incorporated.

Additional accessories are available.

RUCA BACKWALL BUCKET ATTACHMENT

SYSTEM COMPARISON

		DIN	2 win	RUca
		Single-link attachment	Multiple-linke attachment	Single-link attachment
\triangleleft	Brace support in the chain strand	+	+++	+
	Suitability for coarse-grained materials	+	+++	+
	Suitability for high- capacity buckets		+++	
€ €	Wear and tear on attachments	++	+	+
1 1 1	Wear and tear on chain	+	++	++
\mathbf{A}	Component break resistance	+	+++	++
U	Soggy / viscous materials	+	++	+
S t.	System reliability / availability	+	+++	++
•	System / Chain, Safety	-	+	+

RUca – The RUD alternative to DIN system

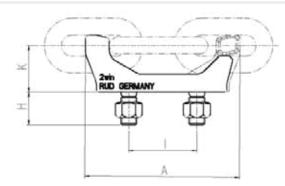
Properties:

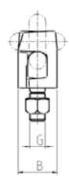
- \cdot Endless chain strands can be used
- · Short assembly and disassembly times, without special tools
- · RUD recommends: Bucket attachments runs over plain wheels
- Suitable for replacing all the DIN bucket attachments in round steel link chain bucket elevators exept side-wall attachments
- · Less wear and tear on chain
- · No oversimensional components
- · Higher component break resistance

RUca is ideally suited for use with 26 × 100-RUD chain

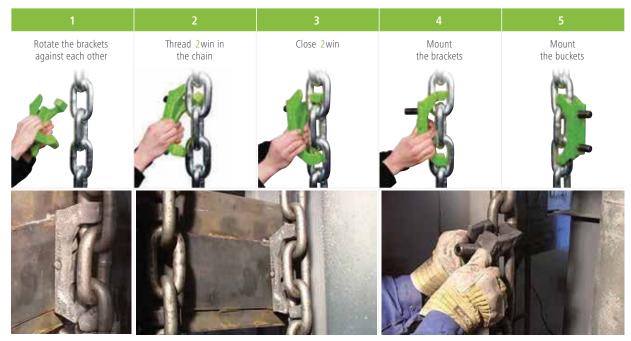
RUca only available as a system in conjunction with RUD chains and RUD chain connectors.

2 WIN BACK-WALL BUCKET ATTACHMENT


BACK-WALL BUCKET ATTACHMENT 2WIN


Properties:

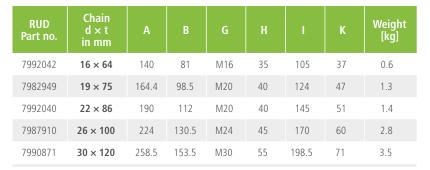
- For using bucket conveyors with up to 60 m height
- Endless chain strands can be used
 Short assembly and disassembly times,
- without special tools
- Bucket attachments runs over sprocket wheels and plain wheels
- Suitable for replacing all the DIN bucket attachments in round steel link chain bucket elevators exept side-wall attachments

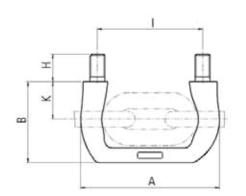


RUD Part no.	Chain d × t in mm	A	В	G	н	I	К	Weight [kg]
7998699	14 × 50	124	40	M14	30	56	39	0.85
7998700	16 × 64	156	43	M16	35	63	45	1.15
8503775	19 × 75	180	50	M20	40	80	53	1.7
8503776	22 × 86	207	58	M24	50	91	62	2.7
8503777	26 × 100	240	60	M24	50	105	71	3.4
7996145	30 × 120	288	75	M30	60	126	84	6.5
7993608	34 × 136	327	92	M36	70	147	96	10.2

ASSEMBLY SEQUENCE

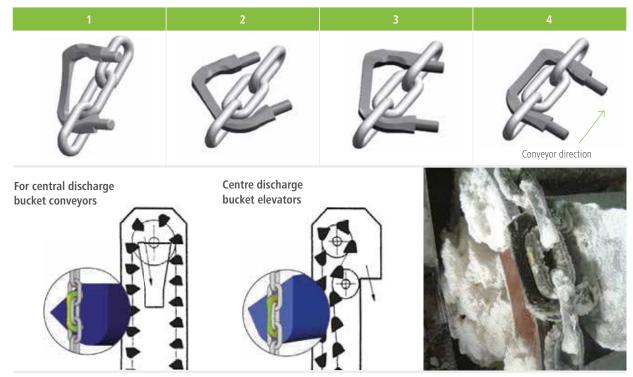
SIDE-WALL ATTACHMENT


SWA


SIDE-WALL ATTACHMENTS SWA

Properties:

- For using in slow-running bucket elevators with gravity drain, central discharge bucket conveyors and return-feed bucket conveyors
- \cdot Endless chain strands can be used
- · Easy assembly in case of variable bucket distance
- Two-link bucket attachment for a smooth run across the sprocket wheels



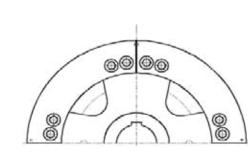
ASSEMBLY SEQUENCE

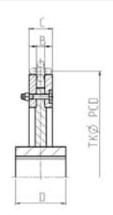
CHAIN WHEEL FOR BUCKET ELE VATORS

CHAIN WHEEL FOR BUCKET ELE VATOR

Properties:

- Especially suitable for RUD systems 2win and sWa
- · Finish-drilled and grooved as per customer requirement
- Robust welded construction with replaceable bearing ring segments
- Hardened bearing ring segments for the drive
- · Unhardened bearing ring segments for deflection


Ordering example:

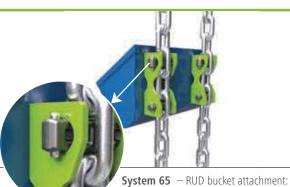

Chain sprockets for system	2win
Design	Complete
PCD Ø in mm	710
For Chain	19 × 75
Number in pieces	4
Hub bore hole	120 ^{H7}
Segments	Hardened

Special grooved wheels and guide wheels on request.

Spare parts: Per chain roller a set of bearings

Chain d × t in mm	PCD Ø	В	с	D	Weight of the complete sprocket approx. kg/piece
14 × 50	500	19	55	120	70
16 × 64	630	22	62	140	135
19 × 75	710	27	71	160	170
22 × 86	800	29	79	170	250
26 × 100	900	33	93	200	350
30 × 120	1000	40	110	200	450
34 × 136	1250	44	114	220	500

ASSEMBLY OF CHAINS ACROSS THE SMOOTH DRIVE CHAIN WHEELS IN THE BUCKET ELE VATOR



41

BUCKET ATTACHMENT

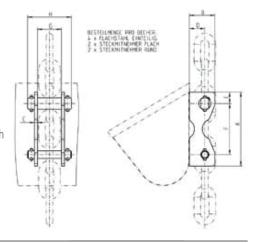
SYSTEM 65

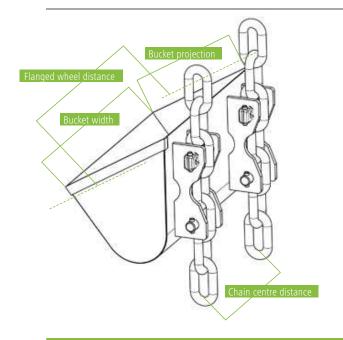
BUCKET ATTACHMENT SYSTEM 65

NEW with integrated wear mark

Chain d × t in mm	Flat steel single part	Plug in attachment flat	Plug in attachment round	A	В	с	D	E	F	G	н	Complete weight [kg]
14 × 50	7908368	61160	61162	150	55	8	33	25	100	49	93	1.0
16 × 64	7908380	61163	61165	190	65	10	40	31	128	58	110	1.9
19 × 75	7908381	61166	61168	230	75	12	45	40	150	68	130	3.0
22 × 86	7908382	61169	61171	260	85	12	50	44	172	80	158	4.6
26 × 100	7908383	61172	61173	290	100	12	61	45	200	94	172	6.4
30 × 120	7908384	61174	61175	340	125	12	75	50	240	109	190	9.7
34 × 136	7908386	54713	54714	380	130	15	80	54	272	122	210	12.8

Properties:


- For heavy operating conditions in the bucket elevator area
- Robust and highly wear-resistant
- Easy assembly and disassembly


of buckets on the chain

The complete version includes the following components:

- \cdot 4 × flat steel part with wear
- mark and wear-resistant steel
- \cdot 1 × plug-in attachment round,
- \cdot 1 × plug-in attachment flat

A repeat order for individual parts such h as flat steels and plug-in attachments can also be placed separately.

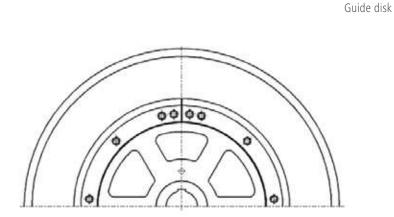
REVERSING WHEEL

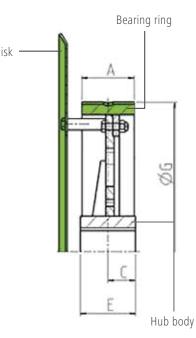
SYSTEM 65

REVERSING WHEEL FOR SYSTEM 65 BUCKET ELE VATORS

Properties:

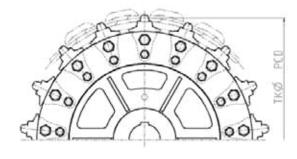
- The bearing ring and the hub plate are stable welded constructions
- · Weight-loaded initial tensioning is not required at the deflection due to the interlocked drive. The chain is redirected into uncompressed condition
- → reduction in wear

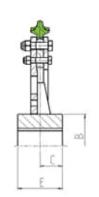

Ordering example:


Pulley block complete For chain 30×120 Support Ø in mm 980 Dimension C in mm 80 Dimension E in mm 160 Ø Hub bore hole 90 H7 Chain centre distance = ... Flanged wheel distance = ...

Order numbers

						Order numb	ers
Support Ø G	А	с	E	Weight kg/Piece	Bearing ring	Guide disk	Reversing wheel
540	110	70	140	120	55148	58287	59846
575	100	70	140	125	57571	58153	59847
630	100	70	140	135	57567	58104	59848
730	120	70	140	185	57599	58163	59849
800	120	80	160	210	57615	58204	59851
870	140	80	160	250	57618	58284	59867
980	190	80	160	420	57642	58285	59875
1095	190	80	160	510	57638	58192	59918
1180	195	100	200	620	59810	58280	59929
1280	195	70	140	560	59839	58296	60001


SPROCKET WHEEL


SYSTEM 65

SPROCKET WHEEL WITH REPLACEABLE INDIVIDUAL TEETH

Properties: · Replaceable individual teeth are	Chain d × t in mm	Teeth	PCD Ø	В	с	E	Weight kg/Piece
made of MnCr special steel • The teeth are highly wear-resist. • Surface hardened	ant 14 × 50	16 20	510 637	160 200	50 85	110 170	71 115
 Hub and secondary sheaves are welded construction 	16 × 64	15* 17 18 20	612 694 734	200 201 200	85 75 75	170 150 150 180	125 148 121 148
Ordering example:For chain22 × 86Number of teeth16Dimension C in mm90Dimension E in mm180	19 × 75	15* 17 19	816 718 813 908	210 240 280 270	90 75 75 90	150 150 150 180	132 209 289
Ø Hub bore hole 180 ^{H7} Alternative: Individual tooth with screw joint	22 × 86	15* 16 17 18	823 878 932 986	275 275 270 300	90 90 90 100	180 180 180 200	238 242 299 350
For chain 22×86 No. of teeth 16 ¹ Other dimensions on request	26 × 100	14* 15 16 17	894 956 1020 1084	300 300 300 300	100 100 100 100	200 200 200 200	270 290 403 410
* Preference sizes in accordance with DIN 15251 (shade)	30 × 120	14* 15 16 17	1072 1148 1225 1300	300 380 300 325	100 100 100 125	200 200 200 250	409 371 446 501
	34 × 136	14* 15 16	1214 1301 1387	370 370 390	100 100 110	200 200 220	489 488 677

TEETH WITH INCREASED LINK SUPPORT ALSO AVAILABLE. FOR THIS REFER TO PAGE 20.

CENTRAL CHAIN

RU80 // RU150 // RU200

Components of central chain

The central chain consists of four basic elements, inner plates, bolts, outer plates and bucket attachments.

The chain can be easily opened, shortened or extended by simply bending the chain links at every position without the tool in an assembly- and disassemblyfriendly way.

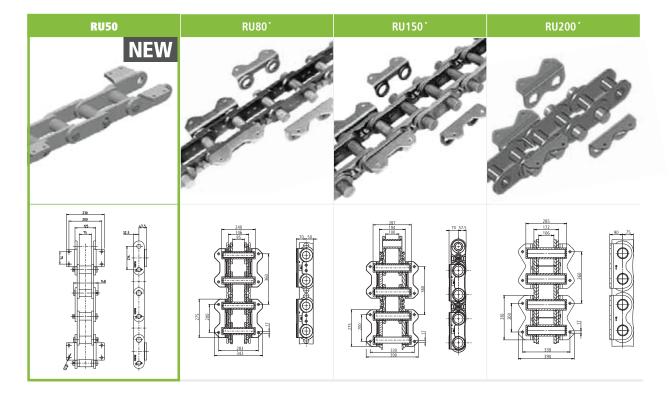
A favourable force distribution and tolerance compensation is achieved using the bolt bearing at the outer plate, which is also carried out in the bushings.

The buckets are mounted using bilaterally stable bucket attachments, which are pushed to the bushings of the outer plates. Increase in the useful life in case of wear of the chain can be achieved once again by turning over the chain.

Properties *:

- · Hinge points: Bolts float-mounted \rightarrow high wear volume
- · Assembly: without special tool possible
- Standard strand length: 1080 mm packaged in an assembly-friendly way

ASSEMBLY SEQUENCE


RUD CENTRAL CHAIN

RU50 // RU80 // RU150 // RU200

CENTRAL CHAIN

			199	201		1000	
Order number Chain	Order number Angle	Chain size	Strand length [mm]	Division [mm]	Breaking force [kN]	Possible bucke्र† distance [mm]	Usual bucket width [mm]
7908279	Chain incl. angle	RU50	3408	142	570	568	250-500
799365 2	6 × 8904355	RU80	1080	180	800	360/720	400-710
7905523	6×8504351	RU150	1080	180	1500	360	400-1000
7992038	Chain incl. angle	RU200	1080	180	2000	360	600-1100

RUD **CENTRAL CHAIN**

DRIVE WHEELS // TENSION SPROCKETS

DRIVE WHEEL

|--|

Drive wheel PCD Ø [mm]	Corr. teeth no. of the tension sprocket	B _{max} [mm]	E _{max} [mm]	Weight approx. [kg]	B _{max} [mm]	E _{max} [mm]	Weight approx. [kg]	Usual chain size
645	nontoothed	300	200	172	200	120	127	RU50
700	without gear teeth	300	200	195	200	120	147	RU50
695	12	350	300	380	220	200	230	RU80
800	14	400	360	480	220	200	300	RU80 / RU150
900	15	400	360	570	220	200	360	RU80 / RU150
960	16	370	220	390	220	200	460	RU150
1000	17	400	300	740	220	200	550	RU80 / RU150
1170	20	420	300	880	220	200	700	RU150 / RU200
1300	22	450	300	970	220	200	765	RU150 / RU200

Properties:

· Running threads made of Cr-Mo steel

· Running surface inductively hardened

×

BELT TYPE BUCKET ELEVATORS

Belt type bucket elevator designs using textile or steel reinforced belts transport materials dust-free without difficulty, even to great heights and are especially suitable for the continuous vertical conveyance of free flowing bulk materials. Suitable adaptations are made to handle coarse-grained or higher temperature materials.

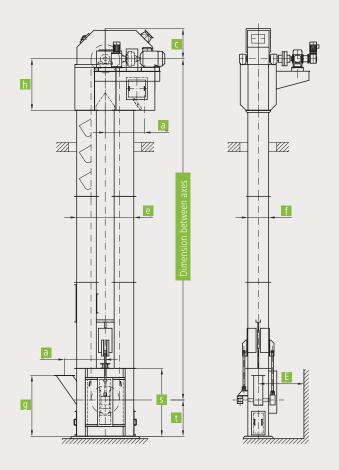
CONVEYING CAPACITIES, REFERENCE VALUES FOR APPROX. 75 % FILLING

		Du	cket DIN	13233							
lth [mm]	160	200	250	315	400	500	630	800	1000	1250	1600
veyance speed [m/s]	1.05	1.05	1.15	1.15	1.20	1.20	1.34	1.34	1.48	1.48	1.48
veyance capacity [m ³ /h]	10	12	25	31	45	63	99	140	224	316	405
Bucket DIN 15234											
lth [mm]	160	200	250	315	400	500	630	800	1000	1250	1600
veyance speed [m/s]	1.05	1.05	1.15	1.15	1.20	1.20	1.34	1.34	1.48	1.48	1.48
veyance capacity [m ³ /h]	16	20	38	48	71	101	160	225	348	490	627
Special bucket											
ith [mm]	160	200	250	315	400	500	630	800	1000	1250	1600
veyance speed [m/s]	1.15	1.15	1.25	1.25	1.28	1.33	1.49	1.49	1.48	1.48	1.48
veyance capacity [m ³ /h]	25	32	56	70	105	154	246	353	512	726	930
	Н	igh-capa	city buc	ket con	veyor						
lth [mm]	160	200	250	315	400	500	630	800	1000	1250	1600
veyance speed [m/s]	1.15	1.15	1.25	1.25	1.28	1.33	1.49	1.49	1.48	1.48	1.48
veyance capacity [m ³/h]	27	34	64	81	134	198	321	480	652	850	1088
	reyance speed [m/s] reyance capacity [m ³/h] reyance speed [m/s] reyance speed [m/s] reyance speed [m/s]	reyance speed [m/s] 1.05 reyance capacity [m ³ /h] 10 th [mm] 160 reyance speed [m/s] 1.05 reyance capacity [m ³ /h] 16 reyance speed [m/s] 1.05 th [mm] 160 reyance speed [m/s] 1.15 reyance capacity [m ³ /h] 25 reyance capacity [m ³ /h] 25 th [mm] 160 reyance speed [m/s] 1.15 reyance speed [m/s] 1.60 reyance speed [m/s] 1.15	reyance speed [m/s] 1.05 1.05 reyance capacity [m ³ /h] 10 12 th [mm] 160 200 reyance speed [m/s] 1.05 1.05 reyance capacity [m ³ /h] 16 20 reyance capacity [m ³ /h] 16 20 th [mm] 160 200 reyance speed [m/s] 1.15 1.15 reyance speed [m/s] 1.15 1.15 reyance capacity [m ³ /h] 25 32 reyance capacity [m ³ /h] 25 32 reyance capacity [m ³ /h] 160 200 reyance speed [m/s] 1.15 1.15 reyance speed [m/s] 1.15 32 reyance speed [m/s] 160 200	regance speed [m/s] 1.05 1.05 1.15 regance capacity [m ³/h] 10 12 25 Bucket DIN th [mm] 160 200 250 regance speed [m/s] 1.05 1.05 1.15 regance capacity [m ³/h] 16 20 38 regance capacity [m ³/h] 16 20 38 regance speed [m/s] 1.15 1.15 1.25 regance speed [m/s] 1.15 1.15 1.25 regance capacity [m ³/h] 25 32 56 regance speed [m/s] 160 200 250 th [mm] 160 200 250 regance speed [m/s] 160 200 250 th [mm] 160 200 250 regance speed [m/s] 160 1.15 1.25	regance speed [m/s] 1.05 1.05 1.15 1.15 regance capacity [m ³/h] 10 12 25 31 But Ext DIN 15234 th [mm] 160 200 250 315 regance speed [m/s] 1.05 1.05 1.15 1.15 regance capacity [m ³/h] 16 20 38 48 regance capacity [m ³/h] 16 20 38 48 regance speed [m/s] 1.6 20 38 48 regance speed [m/s] 160 200 250 315 regance speed [m/s] 1.15 1.15 1.25 1.25 regance capacity [m ³/h] 25 32 56 70 regance capacity [m ³/h] 25 32 56 70 regance speed [m/s] 160 200 250 315 regance speed [m/s] 160 200 250 315 regance speed [m/s] 160 200 250 315	weyance speed [m/s] 1.05 1.05 1.15 1.15 1.20 reyance capacity [m ³/h] 10 12 25 31 45 BUEVENUE th [mm] 160 200 250 315 400 reyance speed [m/s] 1.05 1.05 1.15 1.15 1.20 reyance capacity [m ³/h] 160 200 250 315 400 reyance capacity [m ³/h] 16 20 38 48 71 th [mm] 160 200 38 48 71 reyance capacity [m ³/h] 16 20 38 48 71 reyance speed [m/s] 1.15 1.15 1.25 1.28 reyance capacity [m ³/h] 25 32 56 70 105 reyance capacity [m ³/h] 200 250 315 400 reyance capacity [m ³/h] 25 32 56 70 <	regance speed [m/s] 1.05 1.05 1.15 1.15 1.20 1.20 regance capacity [m ³ /h] 10 12 25 31 45 63 BUCENENT SEAR th [mm] 160 200 250 315 400 500 regance speed [m/s] 1.05 1.05 1.15 1.20 1.20 regance capacity [m ³ /h] 160 200 38 48 71 101 regance capacity [m ³ /h] 16 20 38 48 71 101 regance capacity [m ³ /h] 160 200 38 48 71 101 regance speed [m/s] 160 200 250 315 400 500 regance speed [m/s] 1.15 1.15 1.25 1.25 1.26 1.26 regance capacity [m ³ /h] 25 32 56 70 105 154 regance speed [m/s] 160	regance speed [m/s] 1.05 1.05 1.15 1.15 1.20 1.20 1.34 regance capacity [m ³/h] 10 12 25 31 45 63 99 But colspan="4">But colspan="4">But colspan="4">But colspan="4" th [mm] 160 200 250 315 400 500 630 regance speed [m/s] 1.05 1.05 1.15 1.15 1.20 1.20 1.34 regance capacity [m ³/h] 100 200 250 315 400 500 630 regance capacity [m ³/h] 16 20 38 48 71 101 160 regance capacity [m ³/h] 16 20 38 48 71 101 160 regance speed [m/s] 1.15 1.15 1.25 1.28 1.33 1.49 regance capacity [m ³/h] 25 32 56 70 105 154 246			

DIMENSIONS

Bucket width	b	160	200	250	315	400	500	630	800	1000	1250	1600
	а	724	724	904	904	1004	1160	1264	1460	1673	1747	1747
Head	с	560	560	695	695	785	885	955	1160	1320	1340	1340
	h	850	850	1050	1050	1250	1450	1600	1800	2100	2300	2300
Funnel	е	1000	1000	1250	1250	1400	1650	1800	2100	2450	2550	2550
	f	280	355	450	545	660	770	900	1110	1300	1600	2000
	а	724	724	904	904	1004	1160	1264	1460	1673	1747	1747
Fred	g	1220	1220	1350	1350	1500	1700	1900	2100	2450	2500	2500
Foot	t	670	670	800	800	880	970	1080	1300	1550	1550	1550
	s	1320	1320	1450	1450	1600	1800	2000	2200	2750	2750	2750
Expansion distance	E	900	1000	1200	1300	1500	1600	1800	2100	2500	2900	3500

BELT TYPE BUCKET ELEVATORS


DESCRIPTION

The bucket elevator casings are selfsupporting, but they require horizontal guides at least every 15 meters and below the elevator head. The bucket elevator head comprises a lower section with doors to access the adjustable discharge plate, and braced bearing mountings, for the pedestal bearings which support the drive shaft, the shaft exit points use grease filled radial shaft seals. The upper sections comprise a multipart removable hood with an inspection door. A drive platform is mounted on the side of the lower part of the head for supporting a wide variety of commercially available drives. If required a maintenance platform and or an overhead support / service beam can be fitted if required. An elevator drive normally consists of a geared motor unit, which is normally connected to a frequency controller for maintenance purposes.

For higher power requirements, we recommend a drive unit with a bevel spur gearbox, and standard motor optionally with ancillary drive. Starting characteristics can be optimized by a hydraulic clutch or an electric soft start. The double or single leg casing is a torsionally rigid, sheet metal housing constructed of standard section lengths with flange connectors. the maintenance and assembly door position should preferably be located in the elevators raising casing leg, approximately 0.8 m above a platform. The elevator boot is optionally designed with either internal, oil-filled bearings or external pedestal bearings. With external bearings, the shaft exit points are sealed by gray cast-iron stuffing boxes. There are large assembly doors and cleaning doors on both sides. The belt take-up tension is generated by a parallel weight or spindle take-up device. Whereas the parallel weight take-up automatically compensates for belt stretch, the spindle take-up requires manual readjustment. The driving pulley has a structured rubber covering. Easy to replace, bolt-on, dished rubberized segments are available upon request.

The take-up pulley is designed as a cage drum. internal cones guide any material that enters the drum out to the sides.

The buckets are manufactured according to din or our works standard. The materials used are steel, stainless steel, aluminum, plastic or rubber. The bucket attachments are selected according to the loads to be handled. Rubber strips are fitted between the belt and the backs of the bukkets. The buckets are attached by means of belting bolts, spherical or halfround segments with countersunk bolts. The belts are available with textile or wire-cable reinforcement. Hot-material rubber compounds are used for transporting high-temperature materials. The belt is jointed by mechanical connecting brackets or claw connectors. Belts with a low linear expansion can be continuously vulcanized.

Standard safety devices, comprising off-track governors, speed governors and level indicators, to monitor the operating status of the bucket elevator are incorporated.

Additional accessories are available.

BELT TYPE BUCKET ELEVATORS

THE RUD DRIVE DRUM DESIGN, WITH A CYLINDRICAL CENTRAL SECTION AND LATERALLY DECREASING DIAMETER, ENSURES

- · Uniform load distribution across the width of the belt
- · Low wear on the friction lining
- · Stable running of the belt and so
- · A longer service life for the bett

THE RUD DRIVE DRUM DESIGN WITH INTERCHANGEABLE FRICTION LINING:

- The friction lining is easily exchangeable when worn
- It can be exchanged without removing the drum or opening the belt
- · This makes it easier to maintain and so
- · Reduces down times
- \cdot The segments can be re-used after replacing the rubber

THE RUD PARALLEL TENSION UNIT ENSURES:

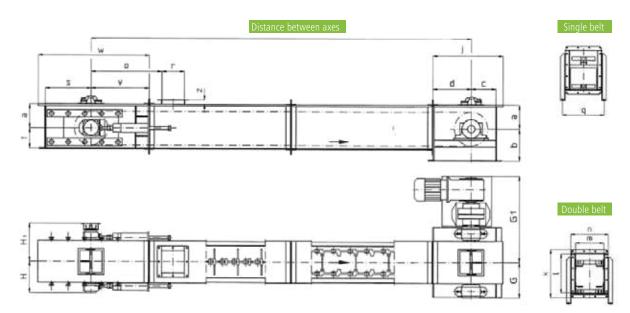
- \cdot Automatic extension compensation of the belt
- $\cdot\,\mathsf{A}$ low pretension force and so low loading
- · Stable running of the belt
- · A maintenance-free design

RUD BUCKET ATTACHMENTS // STEEL-CABLE BELTS

RUD STEEL-CABLE BELTS HAVE:

- A tensile strength of 800-3150 n/mm belt width and a low linear elongation of maximally 0.3%. This means that the belt never needs shortening during its entire service life.
- Steel cross-bracing on both sides to give high transverse rigidity, and so optimal straight running and high tear out strength of the buckets.
- Hot material rubber compositions for conveying material at a continuous temperature of up to 130°C, and temperatureresistance up to a maximum 10°C peak load.
- 5 mm thick cover plates on both sides and solid rubber edge protection for a long service life, even when handling highly abrasive materials.
- Bucket attachment holes cut by water jet to ensure the highest quality.
- Belt ends prepared in the works for endless connection with mechanical belt connectors. Endless closure can also be achived by hot vulcanization.

RUD BUCKET ATTACHMENTS:


- Have soft rubber inserts between the backwalls of the buckets and the belt, which prevent the material jamming and reduce the effects of heat on the belt.
- Matched to the drum.
- · Have always the optimal fastening element for the particular load.
- · Have extremely high tear-off strength when used wit
- steelrope belts, even in the coarse grain range.

TROUGH CHAIN CONVEYOR

Trough chain conveyors are especially suitable for the dust-free, horizontal and moderately inclined transport and metering of bulk materials, including coarser type material. Trough chain conveyors combine high wear and heat resistance with the option of multiple inlets and outlets. We also supply a special version with cleaning scrapers.

CONVEYANCE CAPACITY IN CASE OF HORIZONTAL CONVEYOR / REFERENCE VALUES

Chain width	В	200	250	315	315	400	500	630	800	1000	1250
Chain		Single b	elt		Double b	oelt					
Conveyance speed [m/s]	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Conveyance capacity [m 3/h]											
With chain guide	m³/h	-	-	-	21	45	83	128	244	316	406
Without chain guide	m³/h	23	36	45	56	92	126	158	288	360	450

DIMENSIONS

Chain width	В	200	250	315	315	400	500	630	800	1000	1250
	а	210	210	210	298	298	298	298	405	405	405
Drive station	b	340	340	340	450	450	450	450	610	610	610
	с	230	230	230	300	300	300	300	400	400	400
Trough	d	370	370	370	450	450	450	450	600	600	600
	I	405	405	405	528	528	528	528	730	730	730
	m	260	310	375	375	460	560	690	860	1060	1310
	0	910	910	935	935	1020	1065	1115	1290	1385	1490
Tensioning station	z	53	53	53	53	53	53	53	64	74	74
	t	195	195	195	230	230	230	230	325	325	325
	s	550	550	550	550	550	550	550	550	550	550

TROUGH CHAIN CONVEYOR

These prevent the material from building

up and thus the chain climbing. For mo-

derately abrasive materials, the side walls and base plate are protected by manga-

nese alloy steel against wear. Fusion-cast basalt linings or liner plates with hard

surface welding are recommended for use with highly abrasive materials. In special cases, the trough floor can be designed

The take-up station has flange bearings to hold the takeup shaft. The shaft

exit points in the housing are equipped

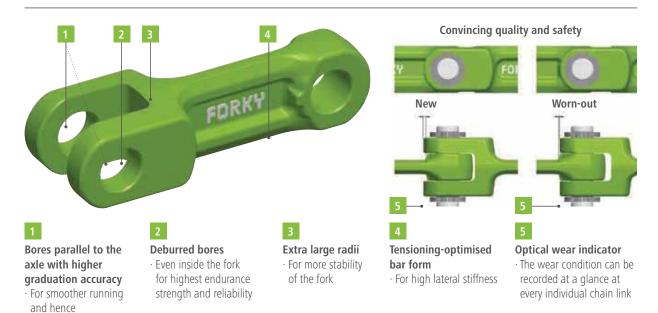
with grease filled, double radial shaft seals. The entire station together with

to act as a material pad.

the inspection door can be dismounted for easy maintenance. The chain take-up is generated and set by spring-loaded pressure screws.

The driving and return sprockets are highly wear-resistant and have interchangeable, hardened toothed segments.

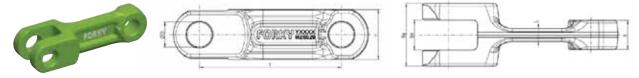
The standard conveyor chains used are forged, fork-sprocket chains that have been heat-treated or case-hardened.


The resistance to wear can be further increased by hard surface welding. Available options are: highly wearresistant RUD round steel chains, bushed transporting chains according to DIN 8165 and block chains.

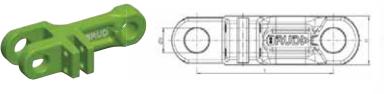
Standard safety devices, comprising speed governors and take-up screw monitors, detect the operating status of the trough chain conveyor.

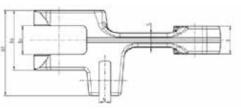
Additional accessories are available.

FORKED-LINK CHAINS


SINGLE // DOUBLE STRAND

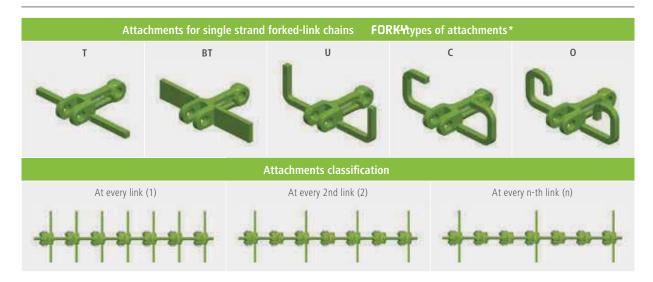
FORKY - SINGLE STRAND


· For minimum wear


Size	Breaking force*[kN]	T [mm]	H [mm]	B [mm]	B _g [mm]	B _n [mm]	S [mm]	D [mm]
142 × 50 × 19	300	142	50	19	42	20	13	25
142 × 50 × 29	480	142	50	29	62.5	30	15	25
260 × 75 × 31	700	260	75	31	70	32	18	32

FORKY – DOUBLE STRAND

Size	Breaking force*[kN]	T [mm]	H [mm]	B [mm]	B _g [mm]	B _n [mm]	S [mm]	D [mm]	N [mm]
142 × 50 × 19	300	142	50	19	42	20	13	25	12.5
142 × 50 × 29	480	142	50	29	62.5	30	15	25	12.5
200 × 50 × 25	350	200	50	25	58	26	17	25	12.5
250 × 60 × 30	520	250	60	30	70	31	20	30	12.5



* Theoretical value for case-hardened forked-link chains

ATTACHMENTS COMPONENTES

WHEELS // SPROCKETS

* All the attachment types can also be delivered with welded plates as per your specification! All types on request!

Forked-link chains are suitable for transporting powdered, flaky, grainy and fragmentary bulk materials, but not for sticky or baking bulk materials.

Examples:

Flour, cement, grains, sugar, chemicals, chipped wood, chips, foodstuff, animal feed etc.

Advantages:

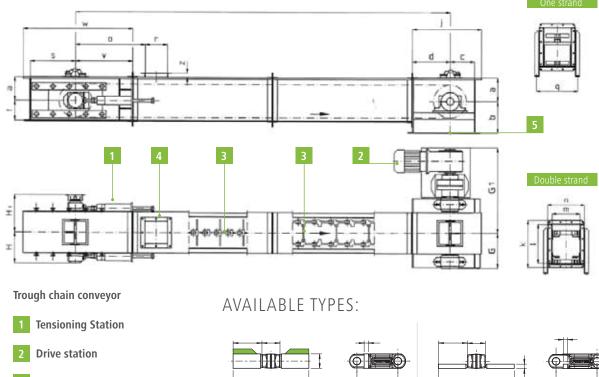
- Simple and robust construction, high operational safety
- Lower space requirement
- Horizontal, inclined and vertical
- conveyor possible
- Explosion safety through slow conveyance without recirculating the material

Disadvantages:

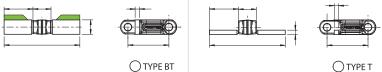
- · Limitation of use regarding suitable
- conveyance materials
- · No chunky, fibrous or sticky bulk materials

Drive wheels for forked-link chain

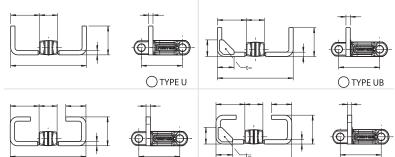
- Properties: Multi-part design Tooth flanks inductively hardened


Reversion wheels for forked-link chain

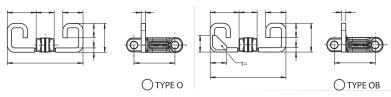
Properties:


FORKY TROUGH CHAIN CONVEYOR

WITH RUD FORK LINK CHAIN


- 3 **Conveyor chains**
- 4 Feeding
- Discharge

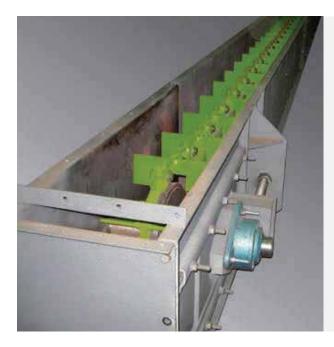
Type T for horizontal and low ascending transport max 10°


Type BT for horizontal and low ascending transport, dusty, free flowing material
Type BT special (height up to 1,75 × fork link height), also for high ascending transport max 30°

OTYPE CB

Type U and UB (UB is custom-made) for high ascending transport, 10° up to 25° Type C and CB (CB is custom-made) for high ascending transport and dusty material, 10° up to 25°

OTYPE C



Type O and OB (OB is custom-made) for very high ascending transport, 25° up to 90° Type C, CB, O and OB primarily for vertical transport

TROUGH CHAIN CONVEYOR

WITH RUD FORK LINK CHAIN

APPLICATIONS FOR RUD FORK LINK CHAINS:

Condition of conveyed goods:

RUD fork link chains are ideally suited for transporting powdery, grainy, flaky, dusty or fragmentary material

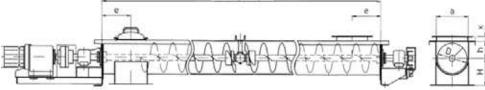
Application:

Construction-, wood-, paper-, plastic-, food and feed industry, chemical industry, mills, port cargo handling, agriculture and recycling industry

Examples of transported material:

Cement, clinker, ash, wood chips, wood shavings, food and animal feed, recycled municipal waste fertilizer, gypsum, coke

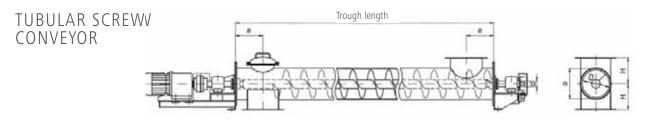
CONVEYING SPEEDS [M/S] (MAX. VALUES)


Material	Speed
Grain	1.10
Granulated material	0.80
Coal, chips, soda	0.50
Cement, phospate, gypsum	0.25
Clinker, petrol co ke, potash	0.20
Filter dust, pyrite	0.10
Ash, coke, sand, quartz	0.05

SCREW CONVEYOR

Long-lasting, easy to maintain screw conveyors are used for the dust-free, horizontal, inclined and vertical transport of finegrained and floury materials. Suitable adaptations are made to handle coarse-grained, higher temperature, abrasive or poorly flowing materials. Screw conveyors also offer the option of multiple inlets and outlets. Various versions handle not only the transport of bulk materials but also emptying, metering, loading, screening and mixing.

TROUGH SCREW CONVEYOR


Trough length

Conveying capacities for horizontal conveyors, reference values for approx. 35 % filling

Diameter [mm]	D	200	250	315	400	500	630	800	1000	1250
Speed	[U/min]	100	90	80	71	63	50	40	32	25
Conveyance capacity	[m ³ /h]	9	17	34	59	93	136	195	281	393

Dimensions

Diameter [mm]	D	200	250	315	400	500	630	800	1000	1250
Trough	а	220	270	335	425	525	660	830	1040	1290
	h	112	140	180	224	280	355	450	560	710
	х	52	52	52	53	53	63	74	74	84
	Н	190	225	265	315	375	450	560	670	800
	е	200	240	280	330	390	470	560	680	820

Conveying capacities for horizontal conveyors, reference values for approx. 50% filling

Diameter [mm]	D	140	190	240	290	370	470	570
Speed	[U/min]	112	100	90	80	71	63	50
Conveyance capacity	[m ³ /h]	5	13	23	45	81	131	195

Dimensions

Diameter [mm]	D	140	190	240	290	370	470	570
Tube-shaped trough	а	160.3	210.1	263	312.7	393.8	495.4	595.4
	h	160	190	225	265	315	375	450
	e	170	200	240	280	330	390	470

SCREW CONVEYOR

The conveyor trough in trough screw conveyors is manufactured as a torsionally rigid sheet metal housing made of standard section lengths with connecting flanges, to which are bolted sturdy cover plates, there is also an inspection door above the outlet. Abrasive materials can be handled by using manganese alloy steel, hard surface welding, fusioncast basalt linings or material padding. Split end walls are bolted to the ends of the trough. This makes it easy to dismount the screw shaft once the metal cover plates have been removed.

The conveyor trough in tubular screw conveyors consists of a stable tube with an inspection door above the outlet. One-piece end walls are bolted to the ends of the trough. These are suitable for supporting the conveyor. Intermediate supports are only required about every 6 meters. They are supplied loose for mounting during assembly. The shaft exit points are usually sealed by gray cast iron stuffing boxes.

The screw shaft is designed as a solid shaft or a rigid tubular shaft with integrated end journals and a welded-on screw thread. The end bearings are pedestal bearings with

antifriction-bearing inserts. When a screw shaft requires intermediate bearings for longer conveying distances. These are designed as easily replaceable units, the torque is transmitted by bolted couplings.

We supply a plain bearing as standard with replaceable twopart, gray cast iron bearing shells. They can be set up for grease gun or central lubrication according to the operational conditions. On request, we also supply antifriction bearings with split roller bearings in a sealed, grease-filled suspended housing. The drive comprises a standard geared motor unit.

As a safety device, a speed governor detects the operational status of the screw conveyor.

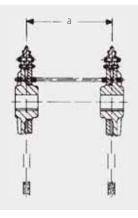
Additional accessories are available.

GENERAL INSTRUCTIONS

INSTALLATION AND OPERATION

The adjustability of the deflection should at least be 3 link divisions (compensation of the setting process when running the chain or when chain abrasion takes place).

The usable tensioning distance should be determined after taking into account the length of the loop and the aggressive strain, which affects the chain. Securing the round link steel chains against excess strain or getting blocked by coarse or foreign bodies by means of suitable safety coupling, shear pin or on the drive.


When assembling the sprocket wheels or pulley blocks as well as when manufacturing buckets / bucket attachment and when attaching insertion rails at the return station, accurate adherence to installation dimension and tolerances specified in the respective installation drawings is the prerequisite of proper functioning.

Adhere to the constant initial tension using springs or weights in adjustable tensioning devices, where the size of the chain pretensioning force must be coordinated as per the specifications of the respective conveyor. During their complete service life, the chains must be under the correct initial tension. Loose chains give rise to difficulties.

During all the system constructions, the corresponding accident prevention regulations must be considered.

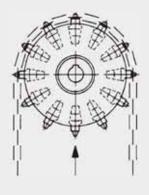
The bulk material to be transported must be supplied in such a way that equal distribution is ensured across the width of the buckets and all the chain loops are equally tensioned through the bulk material and the tractive force. In case of lateral feed, corresponding precautions must be taken.

Unequal loop stress leads to unequal increase in division due to the wear of individual chain loops; this results in the slanting of the buckets, which in turn results to faults at the return station.

Leave distance "a" by means of 2 limiting screws during assembly! (corresponding bores at the wheels available, no RUD delivery for limiting screws).

Wheels that are grooved pair-wise and marked using colours must be put on a shaft together.

The welded joints of the (vertical) chain links must point at the wheel centre.


Vertical chain link

Welded joint

Deflection

In case of toothed drive: chains should lightly touch the sprockets when circulating.

In case of un-toothed drive: provide initial tension to the chain.

In case of replacements: here, replace individual teeth without taking off the chain.

When replacing the chains (setting up a replacement), the chain locks and the individual teeth must also be replaced.

The wear state of the chains is reached in case of permissible increase in division due to wear of about 3.5 %.

After an abrasion of 1.5 %... 2.0 %, teeth should be used with increased link support.

MAINTENANCE & MONITORING ASSEMBLY INSTRUCTIONS

OF CONVEYOR SYSTEMS IN RUD SYSTEM

RUD conveyor chains – highly wear-resistant– are hard-wearing due to their simple structure assembly and hence require very little maintenance. The following points must be observed with regard to high operational safety:

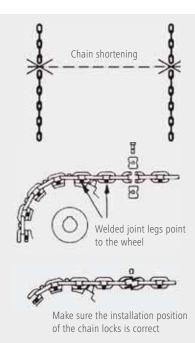
Lubrication: RUD conveyor chains – highly wear-resistant – do not normally require lubrication. Such chains may however be lubricated with standard engine oil (not grease), which do not come in contact with the bulk material or aggressive dusts etc. and hence formation of lubrication gel paste in the joints cannot be safely ruled out. Dirty chains should be cleaned before relubrication.

Initial tension: The chain tensioning must be checked periodically, especially during the start-up phase of new chains and / or in case of large loop lengths. It must be tensioned only to the extent necessary for the proper functioning of the chain and carriers during normal operating conditions. In case of multi-belt conveyors, the initial tensioning force of all the chain loops must be equal. Unnecessary high initial tensioning force reduces the service life.

Monitoring: Chains, locks, wheels, sprockets and flange parts must be checked at periodic inter-vals for damages, corrosion and unusual wearing parts, and the conveyor elements for deflection and the like. While doing so, attention must be paid to the state of the wearing and safety parts. Damages detected must be immediately rectified.

Wear: Round link steel chains and wheel s wear out together under normal conditions. This is reached if the chain links at the driving wheels run roughly under stress due to the abrasion to the chain and simultaneous normal chain tensioning or come off suddenly, i.e. are coves off over the normal break-off point. If the distances between the axis is large, the bulk material is heavily worn out or corroded, in case of high speed, heat influence etc., the chain can approximately 1.5 %. In this case, the wheel is worn out due to the especially high stress and only this must be replaced - but simultaneously at all the driving gears. In principle, the new round link steel chains must only be used along with the new whee Is. Round link steel chains, whose average link thickness at any location has reduced by more than 10 % of the nomi-nal thickness, must be removed. (average link thickness = mean of 2 dimensions taken perpendicular to each other at the maximum weakened cross-section).

In case of necessary chain reductions, level links must be cut out at the belts to be shortened. Shorten chain belts to odd number of links only, in order to get level starting and final links. The chain links must be carefully cut using cutting discs and without damaging the neighbouring links. Avoid heat influences on links not affected by the cutting at all costs.


Welding works: In principle, welding processes should not be carried out at the round link steel chains, chain locks or deeply case-hardened components. It is not permissible to use the chain as earthing connection for electro-welding work at the steel construction.

In case of single and multi-belt conveyors: The welded joints of the chain links at the level of the gear must point at the driving gear; the position of the other links is arbitrary. Make sure that the installation position of the chain locks for the sprocket wheels is correct – coach bolt parallel to the sprocket wheel axis (also applicable for pocket wheels and sprockets). Install carefully and tighten the screws (strength class 8.8) using torque spanners. After a specific period, re-tighten the screws once again. Assembly for Fa flat lock: link U brackets, hammer in locking bolts and secure with a locking pin.

	Tightenin	a toraue
Thread dimension	[nM]	[Lbf ft]
M 6	10	7
M 8	25	18
M 10	49	35
M 12	85	62
M 14	135	98
M 16	210	152
M 18	300	217
M 20	425	307
M 22	580	420
M 24	730	528
M 27	1100	796
M 30	1450	1049
M 33	1900	1374
M 36	2450	1772

RUN

Permissible screw tightening torques for screw quality class 8.8 with total drive value $\mu_{\text{ oes}}=0.14.$

TECHNICAL QUESTIONNAIRE FOR

TEL.: + 61 7 3809 1300 FAX: + 61 7 3809 1301 INFO@RUD.COM.AU WWW.RUD.COM.AU

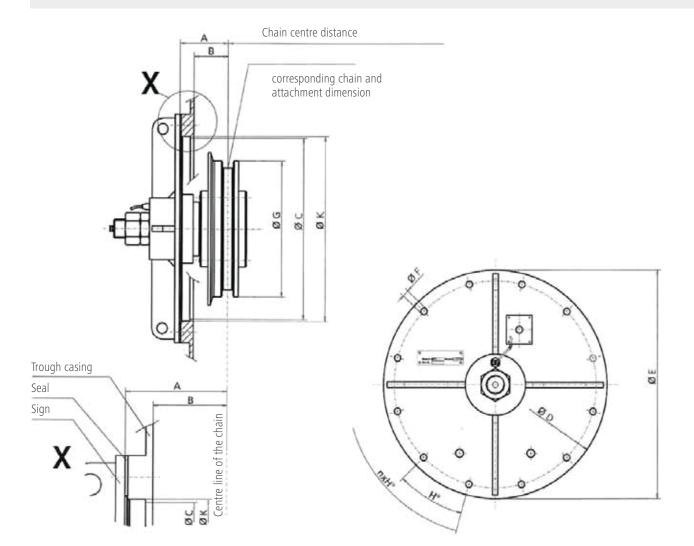
Company:*		Name:*		
Road:*		E-Mail:*		
Post code:*		Place:*		
Telephone:*		Fax:		
Project:		□ New construction	n 🗆 Reconstruc	ction
Bulk material designation: *				
Bulk material bulk density [t/m ³]:*				
Dull metanial and attice	Corrosion:	□ high	□ medium	□ none
Bulk material properties	Abrasion:	🗆 high	🗆 medium	🗆 none
Granularity / dimension:		mm max.	mm min.	
Moisture content:		Temperature [°C]:		
Conveyance capacity max. [t/h]:*		Speed [m/s]:		
Daily operating hours [h]:		Annual operating h	iours [h]:	
Dimension between axes [m]:*	Trough width [mm]:*		or conveyor width [mm]:*
Conveyor: on lower run on upper run	Assignment of materi □ regular □ irregular	al to be transported:	Type of conveyor: □ Ash remover □ Trough conveyor	□ Coaling □ Bunker discharge
Chain centre distance [mm]:		Drive power require	ement [kW]:	
Chain sprocket diameters [mm]:		Max. operating for	ce/chain strand [kN]:	
Scraper bars: (Scraper bar outline on the following pag	□ yes □ no je S. 63)			
Line profile:*		Profile examples:		
Please add detailed drawing with the necessary dimensions!				
Additional specifications/ Additions:			• •	
Annexes / Drawings / Pictures:				

Please note: This form contains mandatory fields that must be completed. Mandatory fields are marked with a * sign.

SKETCHES FOR SCRAPER BARS

Clear through width of the conveyor [mm]:

Through bottom material

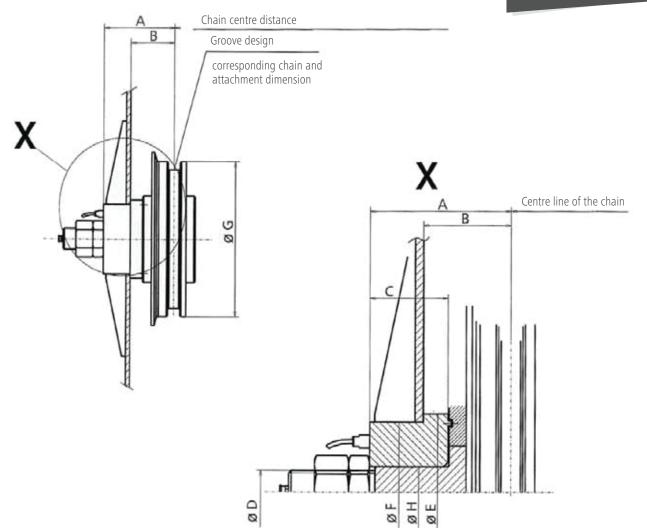

Chain centre distance [mm]:

🗆 Granite / Basalt

□ Hardox □ Wearing rails

Additional information/additions to questionnaire conveyors (Page 62)

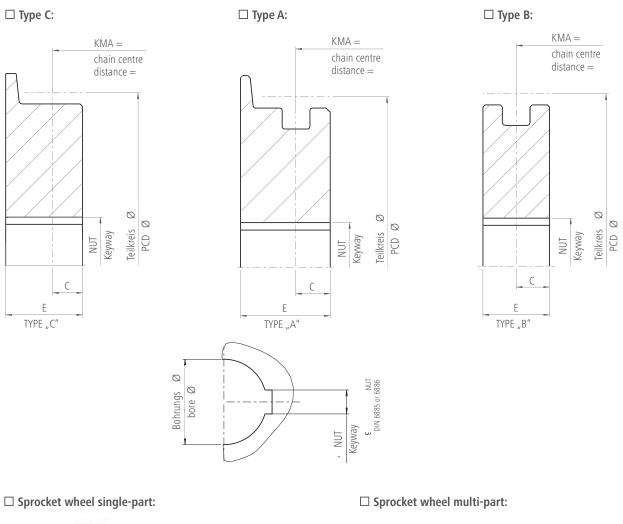
SOI 1/2 DIMENSION SHEET

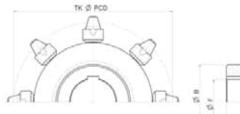

Connecting and functional dimensions

	Dimension mm	n (number of bores in the plate):
Α		
В		
ØC		Chain type and dimension:
ØD		
ØΕ		
ØF		Attachment type and dimension:
ØG		
H°		
ØК		

CONVEYOR SYSTEMS

TEL.:+ 61 7 3809 1300 FAX:+ 61 7 3809 1301 info@rud.com.au www.rud.com.au




Connecting and functional dimensions

	Dimension mm	Chain type and dimension:
А		
В		
С		
ØD		
ØΕ		Attachment type and dimension:
ØF		
ØG		
ØН		


REVERSING WHEEL TYPE A-B-C

HUBS / BORE DIMENSIONS

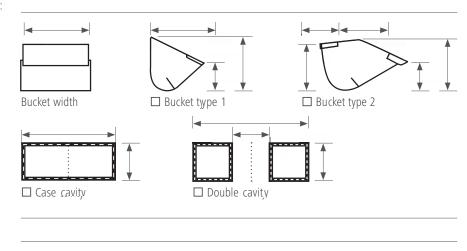
Ordering example:Sprocket wheelSingle part/Multi-partFor chain 19×75 Number of teeth8Hole-Ø...mm

Dimension C...mmDimension E...mmNumber of pieces10Other dimensions on request.

BUCKET ELEVATOR & COMPONENTS

TEL.:+ 61 7 3809 1300 FAX:+ 61 7 3809 1301 info@rud.com.au www.rud.com.au

Company:*		Name:*			
Road:*		E-Mail:*			
Post Code:*		Place: *			
Telephone: *		Fax:			
Project:		□ New constructio	n 🛛 Reconstruction		
Bulk material designation:*					
Bulk material bulk density [kg/dm ³]:*				
Granularity / dimension:		mm max.	mm min.		
Moisture content:		Temperature [°C]:			
Conveyance capacity max. [t/h]:*		Speed [m/s]:			
Daily operating hours [h]:		Annual operating hours [h]:			
Dimension between axes [m]:*	Mounting of buckets:*	□ shouldered	🗆 lateral		
Bucket designation:*					
Bucket content [l]:*	Bucket weight [kg]:*				
Axle drive shaft rotation [U/min]:		Diameter drive shaft [mm]:			
Diameter of sprocket wheels [mm]:		Diameter expansion shaft [mm]:			
		Please add the drawing of the bucket conveyor and the bucket.			
Bucket attachment:	•		R month		
	🗆 RUca 🛛 System "65"	□ System"2win"	□ System "SWA" □ "Central Chain" System		


□ RUca □ System "65" □ System "2win" □ Syster □ other bucket attachment (e.g. DIN)

Supplier/Manufacture actual chain:

Bucket specification (please add the dimensioning)

Casing dimension: (please add the dimensioning)

Additional specifications / drawings / pictures / additions (f. e. customer issues, target, project, extended settings)

TECHNICAL QUESTIONNAIRE FOR TROUGH CHAIN CONVEYOR / SCREW CONVEYOR TEL:+ 61 7: FAX:+ 61 7:

TEL.:+ 61 7 3809 1300 FAX:+ 61 7 3809 1301 info@rud.com.au www.rud.com.au

Company: *		Name: *			
Road:*		E-Mail:*			
Post code:*		Place:*			
Telephone:*		Fax:*			
Project:					
Material to be transported:					
Bulk material properties:					
	Corrosion:	🗆 high	🗆 medium	□ none	
	Abrasion:	🗆 high	🗆 medium	□ none	
Granularity / dimension:		mm			
Speed [t/m ³]:		Temperature [°	C]:		
Moisture content:		Requested con	veyance capacity [t/h]:		
Conveyance speed [m/s]:					
Total daily service life:		Per year [h]:			
Dimension between axes [m]:		Angle of gradie	Angle of gradient [degree]:		
Trough width [mm]:					
Conveyor on lower run		Conveyor on u	pper run		
Assignment of material to be transported?	Regular:		Irregular:		
	 a) Line profile with specification of the location of the bulk material task and removal with dimension specification b) Bunker discharge (attach the dimensioned drawing) 				
Chain sprocket diameters [mm]:					
Drive power requirement [kW]:					
Max. operating force per chain strands [kN]					

In case of special requirements, please enclose a specification or a sketch.

TEL.: + 61 7 3809 1300 FAX: + 61 7 3809 1301

info@rud.com.au www.rud.com.au

TECHNICAL QUESTIONNAIRE FOR

FORKED-LINK CHAINS

O Variante A Type A

Bo**l**zen

Schließring

Locking ring (Circlip)

Pin

Single strand

Verschiedene Arten der Verbindung Different types of the connection Ovariante B (Sondervariante) Type B (Special design) ТГ E θÐ Ð θ -Kopfbo**l**zen Head pin ○ TYPE BT **OTYPE T** --Spannstift Locking pin -Ste**ll**ring Adjusting ring \rightarrow φ Ю O Mitnehmer an jedem Glied Attachment at every link **OTYPE U** O TYPE UB O Mitnehmer an jedem 2. Glied Attachment at every 2nd. link C **OTYPE C** ◯ TYPE CB O Mitnehmer an jedem 3. Glied Attachment at every 3rd. link -6 6-6 6 C O Mitnehmer an jedem _ten Glied **OTYPE O O**TYPE OB Attachment at every ____ link Verschiedene Arten der Verbindung Different types of the connection O Mitnehmer an jedem Glied ++ Attachment at every link O Variante A Type A C+ \odot €Э 🔿 ТҮРЕ Н -Bo**l**zen Pin Sch**l**ießring Locking ring (Circlip) O Mitnehmer an jedem 2. Glied Attachment at every 2nd. link Ovariante B (Sondervariante) Type B (Special design) -Kopfbo**l**zen ○ ТҮРЕ НВ Head pin X 2:5 Ù · Q O Mitnehmer an jedem 3. Glied Attachment at every 3rd. link -----**€**∰ A Po Æ Stellring Spannstift Adjusting ring Locking pin Ovariante C (Sondervariante) Type C (Special design) **OTYPE HV** L profile EN 10056-<u>x</u>x -Ha**l**testift Fixing pin X 2:5

Double strand

O Mitnehmer an jedem _ten Glied Attachment at every ____ link

○ TYPE HW

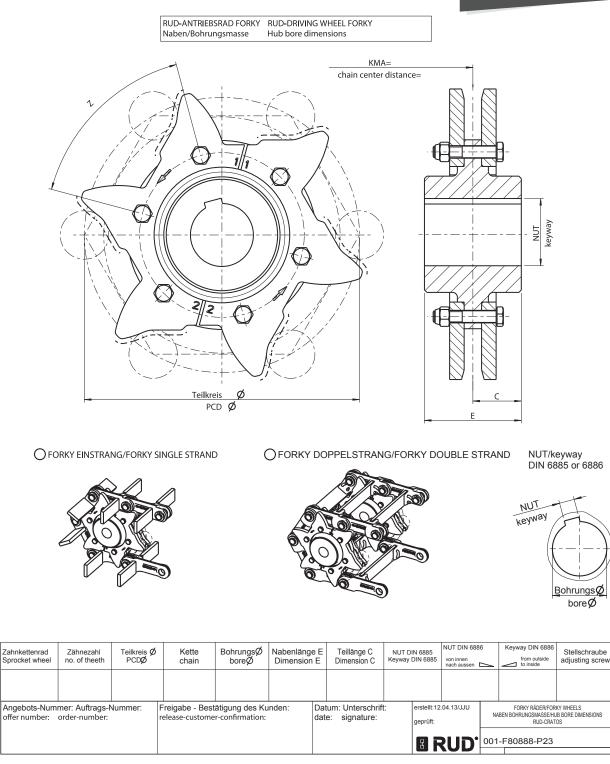
.....

......

0

-Bolzen

annstift


Locking pin

Stellring

Adjusting ring

TECHNICAL QUESTIONNAIRE FOR FORKED-LINK CHAINS

TEL.: + 61 7 3809 1300 FAX: + 61 7 3809 1301 info@rud.com.au www.rud.com.au

CONVEYOR AND DRIVES RUD CONVEYOR SYSTEMS

- · Sling and lashing system
- · Conveyor systems
- · Hoisting and drive technology
- · Tyre protection chains
- · Slide protection chains
- Military technology
 Furnishings

Communication medium for other RUD products:

Refer to: www.rud.com or tel.: +49 (0) 7361 504-0

RUD Chains 12 Commerce Drive LARAPINTA QLD 4110 **Tel:** + 617 3809 1300 **Fax:** + 617 3809 1301 **Email:** info@rud.com.au **Web:** www.rud.com.au

CONVEYANCE AND DRIVE TECHNOLOGY

Whether it is complete bucket conveyor, chain conveyors or chain drive, RUD BULKOS rises to every conveyor challenge thanks to our extensive experience with the most varied bulk materials such as cement, fertilisers, stones and soils and many others.

The RUD TECDOS team is developing and manufacturing drive solutions for turning, lifting, moving, telescoping or shifting. in addition to the component program, complete solutions are also available as the TECDOS omega and Pi drives.

CRATOS

As the technology leader, RUD provides components and total solutions on the basis of round link steel chains and FORKY for energy generation with coal and biomass as well as in the area of recycling. Be it material supply, ash removal or cleaning scraper, RUD CRATOS offers the suitable solution.

RUD chain locks "Powerblock" and "dominator" are considered as benchmarks of the industrial sector throughout the world and are used in high-performance mining companies due to their high level of reliability.

RUD is the global original equipment manufacturer among the leading lifting equipment manufacturers. We also offer a variety of round link steel chains for different industries.